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Abstract
Machine learning, artificial intelligence, scientific modelling, information analysis,
and other data heavy fields have driven the demand for tools that enable deriva-
tive based optimization. Automatic differentiation is a family of algorithms used
to calculate the derivatives of programs with only a constant factor slowdown.
There are many implementation strategies, some built into a language and some
outside of it, and there are many different members of the family. The util-
ity of automatic differentiation makes it worthwhile to implement it in as many
languages as possible.

Effects and handlers are a powerful control flow construct in programming
languages based upon delimited continuations. They are a structured method of
including side effects into programs, and have found many uses including non-
determinism, state management, and concurrency. Effects and handlers excel in
facilitating non-local control flow and also provide methods of abstracting and
composing effects. Mainstream programming languages are increasingly incorpo-
rating effects and handlers, notably OCaml and WebAssembly.

We show that effects and handlers are well-suited for implementing automatic
differentiation algorithms while maintaining the desirable asymptotic efficiency.
In particular, effects and handlers allow for succinctness in the presence of com-
plex control flow. On a practical level, we implement eight automatic differentia-
tion algorithms in four languages with effects and handlers. The implementations
range from standard AD algorithms such as forward mode and continuation-based
reverse mode, to more advanced modes such as checkpointed reverse mode. We
benchmark the standard modes to empirically show that we can reach the correct
asymptotic complexity.

Furthermore, we build up a mathematical framework in which to prove cor-
rectness of selected standard modes. To do so, we extend the set-theoretic deno-
tational semantics of a simple effect and handler language to a category-theoretic
semantics. We then describe how to perform a generalized proof by logical re-
lations in this setting, and identify sufficient conditions for our proof method
to apply. Equipped with our conditions, we show that diffeological spaces (a
generalization of Euclidean spaces) admit proof by logical relations. Ultimately,
this enables us to prove our implementations of forward mode and continuation
reverse mode correct.
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Lay summary
“Optimization” is the process of finding the best solutions to a problem based on a
numerical quantity capturing how good the solution is. A “derivative” calculates
how a quantity changes based on its input, and fields such as machine learning
and AI use derivative based optimization to find solutions. An “algorithm” is a
step-by-step description of how to solve a problem, and “automatic differentia-
tion” (AD) is a family of algorithms which calculate derivatives efficiently and
accurately. There are many ways to implement AD, and given that AD is so
useful, we want every programming language to support it.

The “control flow” of a program describes the order in which pieces of the
program are run. “Effects and handlers” are a programming language feature
which can express complicated control flow. They also help specify how a program
can interact with the world, like reading files or going online, which are called “side
effects”. Effects and handlers help with the “abstraction” (ignoring unnecessary
details) and the “composition” (combining simpler things to make a complex
thing) of side effects. Effects and handlers are becoming more popular, and have
made it into real-world programming languages.

We show by example that effects and handlers are a good match for AD by
concisely implementing eight AD algorithms in four different languages. Our im-
plementations range from standard AD algorithms like “forward mode” (which
computes from input to output) and “reverse mode” (which computes from out-
put to input) to advanced versions like “checkpointed reverse mode” (similar to
reverse mode, but using less space by calculating more). For each standard imple-
mentation, we analyze its “asymptotic efficiency” (or how the efficiency changes
as the problem we solve gets larger) through test programs.

We also create a mathematical framework to prove the “correctness”, i.e. giv-
ing the correct answer, of some standard modes. We extend a basic “denotational
semantics” (a way of giving each program a mathematical meaning) to a more
advanced one using “category theory”, which is a theory of mathematical struc-
tures. Next, we show how to do a general proof by “logical relations” which
describes how programs are related to each other. We then show our method
supports “diffeological spaces”, an area of math which supports taking deriva-
tives. Finally, we use logical relations and diffeological spaces to prove that our
implementations of forward mode and continuation reverse mode are correct.
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Chapter 1

Introduction

Cardamom1

Machine learning, artificial intelligence, scientific modelling, information anal-
ysis, and other data heavy fields have driven the demand for tools which enable
derivative based optimization. The family of algorithms known as automatic
differentiation (AD) is the foundation of the tools which allow automated calcu-
lation of derivatives. The family can be coarsely divided into forward mode and
reverse mode. Multiple modes exist because their asymptotics depend on differ-
ent features of the differentiated programs. Forward mode AD was introduced in
1964 by Wengert [Wengert, 1964], and reverse mode AD was created by Speelpen-
ning in his 1980 thesis [Speelpenning, 1980]. It is not surprising that, given its
long history, AD has been implemented in many different ways. The common-
ality between implementations is the preservation of the surprising efficiency of
AD. Forward and reverse mode AD are only a constant multiple slower than
the program being differentiated, where the optimal factors are two to three and

1all chapter heading images are generated by DALL·E 2
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2 Chapter 1. Introduction

three to four times slower respectively. All in all, AD has experienced widespread
adoption, either directly or through tools and systems based upon it.

Given the utility of AD, it is desirable to have implementations of it in as
many languages as possible. However, the implementation strategy is heavily
dependent on the language being used. Furthermore, the problem which AD is
being applied to can necessitate the use of a particular mode of AD, and so the
strategy employed must be flexible enough for many variations of AD. Identifying
a suitable set of features in a programming language that can cope with these
varied demands is not straightforward.

Effects and handlers are a structured method of including side-effects into
programs, and are themselves a structured form of delimited continuations. Al-
gebraic effects were introduced in 2001 by Plotkin and Power (2001a) and han-
dlers for them were introduced in 2009 by Plotkin and Pretnar (2009). Effects
and handlers can be viewed as an extension of the common feature of catchable
exceptions. Catching an exception terminates the program delimited by the ex-
ception handling code. In contrast, effect handlers can resume the handled code
and pass a value to it. Effects and handlers can implement many common side
effects such as state, exceptions, non-determinism, logging, and input-output.
They also support effect abstraction, composition, and program reuse through
the ability of handlers to provide multiple interpretations of an effect. Further-
more, they provide a unified base in which to implement complex control flow
constructs such as coroutines, generators, and async/await. In each instance,
the control is non-local, an aspect in which effects and handlers excel. These
use cases and others have motivated the inclusion of effects and handlers into
mainstream projects such as OCaml [K. Sivaramakrishnan et al., 2021] and We-
bAssembly [Phipps-Costin et al., 2023].

The ability of effects and handlers to capture non-local control flow and man-
age effects make them an ideal match for implementing AD. An effect can be
defined where there is one operation for each primitive mathematical function,
and a handler can be defined for each AD algorithm. The power of effect ab-
straction allows a program to be written once against a specified interface and
later executed using any AD algorithm. Compositionality allows AD modes to
be combined to create new modes. We can also reuse handlers implementing
AD modes in the definition of more advanced modes. Thus, the end-user of our
framework has access to a modular and composable framework for performing
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AD. Furthermore, effects and handlers can provide the desired asymptotics for
AD.

Finally, the rich mathematical formulation of effects and handlers allow us to
prove simple AD modes correct in a manner which can be extended later for the
more complex algorithms.

Thesis Statement

This thesis provides a recipe for implementing automatic differentiation algo-
rithms using effects and handlers, as well as a general categorical system for
performing proofs by logical relations on effects and handlers. Thus, when a
language supports effects and handlers, AD can be readily translated from our
examples, providing a valuable tool for users. Our implementations are not tied
to a specific language as we provide implementations in four different languages.
Furthermore, languages with an effect type system can help prevent AD specific
mathematical errors. The implementations themselves consist of the fundamental
components of each AD mode, and are thus easy to reason about. Beyond this,
we also show experimentally that our implementations satisfy the core asymptotic
complexity of standard AD algorithms, as well as provide a real world benchmark
showing that our implementation is competitive with comparable AD systems.

We then formulate a framework of logical relations for an effect and handler
language, which is described in category theoretic terms using fibrations. We
identify sufficient conditions in which our framework is applicable and show that
the category of diffeological spaces satisfy them. Finally, we substantiate our
claim that handler based AD is easy to reason about by proving two implemen-
tations correct via denotational semantics

Contributions

We make the following contributions in this thesis:

• We provide implementations of eight different AD modes across Frank, Eff,
Koka, and OCaml using effects and handlers (chapters 4 and 5);

• We examine how advanced modes of AD are straightforwardly expressed
using effects and handlers (chapter 5);
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• We provide experimental evidence that the standard modes, including for-
ward and reverse mode, have the correct asymptotics (section 6.1);

• We provide experimental evidence that stateful reverse mode is competitive
with real world tools by adding our implementation to a benchmarking suite
and showing we are competitive with comparable tools (section 6.3);

• We describe how to perform proofs by logical relations for a terminating
effect and handler language whose semantics is categorical (chapter 7);

• We set out sufficient conditions to apply such methods (chapter 7);

• We prove that the category of diffeological spaces satisfies these sufficient
conditions (section 8.1); and

• We prove forward and continuation-based reverse mode correct (sections 8.2
and 8.3).

There are limitations to our work. We have yet to compare our implementations
to tools used by practitioners. Furthermore, we do not always achieve the cor-
rect asymptotics for each standard AD mode in some languages, although there
is always at least one example for each mode except continuation reverse mode.
Additionally, we have not examined how our implementations behave in the pres-
ence of other effects. Finally, we only prove correctness of two of the most basic
modes, and our model language contains no inbuilt state or recursion.

There is previous work in implementing AD with handlers as well as proving
implementations correct. The first implementation we are aware of is [K. C.
Sivaramakrishnan, 2018], and is of stateful reverse mode AD, which was adapted
from an implementation by [F. Wang and Rompf, 2018] which used delimited
continuations. F. Wang, X. Wu, et al. also extended their delimited continuation
AD approach in [F. Wang, Zheng, et al., 2019]. Finally, [de Vilhena and Pottier,
2023] prove the correctness of an implementation analogous to that of K. C.
Sivaramakrishnan. They use their separation logic for effects and handlers to
prove stateful reverse mode correct with respect to an operational semantics. In
contrast, we define and use a denotational semantics for our proofs.
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Outline

Part I presents an overview of AD and effects and handlers. Chapter 2 provides
background for AD. We give a historical overview, derive the main forms of AD,
as well as cover the practice and theory of AD. Chapter 3 covers the basics of
effect and handler systems with a short tutorial and a discussion of the design
space of such systems. We also introduce each of the four languages we will
implement AD algorithms in and note what design choices they make.

Part II presents the implementation of various AD modes and discusses their
performance. Chapter 4 implements the standard AD modes in each language
while noting any important differences between programs, while Chapter 5 im-
plements the more advanced AD modes. Chapter 6 examines the asymptotic
performance of each program and discusses the results, as well showing that
stateful reverse mode is competitive with comparable real world tools.

Part III develops our mathematical tools and applies them. Chapter 7
builds up the mathematical tools needed in order to prove the correctness of
selected AD algorithms. Chapter 8 then applies these tools to prove the cor-
rectness of forward mode AD and continuation reverse mode AD.

Finally, Chapter 9 concludes the thesis with a summary of what we have
achieved and discusses further research directions.





Part I

Background

7





Chapter 2

Automatic Differentiation

Cinnamon

2.1 Historical background

The history of differentiation and programming languages stretches back to the
1960’s. In 1964, Wengert introduced a method which compositionally calculated
the derivative of a program involving real numbers [Wengert, 1964]. Wengert’s
method was the first in a family of algorithms and methods now known as auto-
matic differentiation (AD)1. AD can be coarsely split into two main categories,
forward mode and reverse mode. Forward mode is essentially Wengert’s method.
Reverse mode was created in Speelpenning’s 1980 PhD thesis [Speelpenning,
1980]. Each of these modes has many variations, and the field of AD has been
productive since its inception.

Differentiable programming is a programming language paradigm in which
1Sometimes also known (mostly historically) as algorithmic differentiation.

9
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some or all language constructs can be differentiated2, and it is made possible
through AD. The term differentiable programming initially appeared in Christo-
pher Olah’s blog in 2015 [Olah, 2015], originally as “differentiable functional
programming”. The current form, lacking the modifier functional, first appeared
in a contribution by David Dalrymple in 2016 [Dalrymple, 2016]. Since then, it
has been championed by deep learning practitioner Yann LeCun [LeCun, 2018]
among others and has gained traction as a useful research direction.

2.2 Deriving Forward and Reverse Modes

Forward and reverse mode AD can be easily derived for pure, straight-line pro-
grams. We will do so by example. We assume that the reader is familiar with
partial derivatives of real-valued functions, as well as matrix-matrix and matrix-
vector multiplication. Consider the algebraic definition

z = h
(
g(f(a), b), f(a)

)
where a, b ∈ R, f : R→ R, g, h : R2 → R, and all functions are differentiable. We
can rewrite this as a sequence of calculations using intermediate variables

x = f(a) (1)

y = g(x, b) (2)

z = h(y, x) (3)
and consider the sequence as a pure, straight-line program where the variables
a, b are inputs and the variables x, y, z are initialized to 0. We now regard the
state of the program at each line as a five-tuple (a, b, x, y, z) ∈ R5 containing the
values of our variables. Thus, each line (i) gives a function Fi : R5 → R5, i.e.

F1(v0, v1, v2, v3, v4) = (v0, v1, f(v0), v3, v4)

F2(v0, v1, v2, v3, v4) = (v0, v1, v2, g(v2, v1), v4)

F3(v0, v1, v2, v3, v4) = (v0, v1, v2, v3, h(v3, v2)).
Our program can then be rewritten to

x⃗0 = (a, b, 0, 0, 0)

x⃗1 = F1(x⃗0)

x⃗2 = F2(x⃗1)

x⃗3 = F3(x⃗2)
2Here, differentiated is used in the standard mathematical sense, i.e. calculus.
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where x⃗3 gives the final state. The multivariate version of differentiation is given
by the Jacobian, which for a differentiable function F : Rn → Rm and a point x⃗ ∈
Rn we denote by ∇F (x⃗). The Jacobian ∇F (x⃗) is an m×n matrix containing all
the partial derivatives of F at x⃗. Thus, writing F (x⃗) as F (x⃗) C (f1(x⃗), . . . , fm(x⃗))
for differentiable functions fj : Rn → R, the Jacobian ∇F (x⃗) is

∇F (x⃗) B


∂1f1(x⃗) · · · ∂nf1(x⃗)

... . . . ...
∂1fm(x⃗) · · · ∂nfm(x⃗)


where ∂i is the ith partial derivative operator. The Jacobian satisfies the multi-
variate chain rule ∇(G ◦F )(x⃗) = ∇G(F (x⃗))×∇F (x⃗). Therefore, by viewing our
program as a composition of state-transforming functions, namely F3 ◦ F2 ◦ F1,
we calculate

∇(F3 ◦ F2 ◦ F1)(x⃗0) = ∇F3(x⃗2)×∇F2(x⃗1)×∇F1(x⃗0)

where × is matrix-matrix multiplication, and later matrix-vector multiplication
as well. The crux of both forward and reverse mode AD is this calculation, which
each mode uses differently.

For forward mode, we observe that the matrix product can be computed from
right-to-left by

X1 = ∇F1(x⃗0)

X2 = ∇F2(x⃗1)×X1

X3 = ∇F3(x⃗2)×X2.

It would be inefficient to materialize entire matrices in practice, and so we can
pre-multiply by a vector d⃗x0 to obtain

∇(F3 ◦ F2 ◦ F1)(x⃗0)× d⃗x0 = ∇F3(x⃗2)×∇F2(x⃗1)×∇F1(x⃗0)× d⃗x0

giving the sequence of vectors

d⃗x1 = ∇F1(x⃗0)× d⃗x0

d⃗x2 = ∇F2(x⃗1)× d⃗x1

d⃗x3 = ∇F3(x⃗2)× d⃗x2.

Calculating the Jacobian of the function F1(v0, v1, v2, v3, v4)=(v0, v1, f(v0), v3, v4)
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at x⃗0, we see

∇F1(x⃗0) =



1
1

∂f(a) 0
1

1


where ∂f is shorthand for the derivative of f : R→ R at a and empty entries are
0. Similarly,

∇F2(x⃗1) =



1
1

1
∂Rg(x, b) ∂Lg(x, b) 0

1



∇F3(x⃗2) =



1
1

1
1

∂Rh(y, x) ∂Lh(y, x) 0


where ∂Rg is the partial derivative of g in the right argument and so on. Observe
that the Jacobians are sparse due to each of the Fi’s only changing one variable.
We now calculate the vectors d⃗xi. We use the notation d⃗i[a], d⃗i[b], d⃗i[x], d⃗i[y], and
d⃗i[z] for the first, second, third, fourth, and fifth components of d⃗xi respectively.
Pairing each vector with the matching line of our original program, we get

x = f(a) d⃗x1 = (d⃗0[a], d⃗0[b], ∂f(a) · d⃗0[a], d⃗0[y], d⃗0[z])

y = g(x, b) d⃗x2 = (d⃗1[a], d⃗1[b], d⃗1[x], ∂Rg(x, b) · d⃗1[b] + ∂Lg(x, b) · d⃗1[x], d⃗1[z])

z = h(y, x) d⃗x3 = (d⃗2[a], d⃗2[b], d⃗2[x], d⃗2[y], ∂Rh(y, x) · d⃗2[x] + ∂Lh(y, x) · d⃗2[y]).

Observe that d⃗3[x] = d⃗2[x] = d⃗1[x] because the x components of the d⃗xi’s are only
changed when x is assigned to. Thus, we do not need to define a vector d⃗xi at
each step, it is sufficient to only define one new scalar variable. We can therefore
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rewrite the above as

x = f(a) dx = ∂f(a) · da

y = g(x, b) dy = ∂Rg(x, b) · db+ ∂Lg(x, b) · dx

z = h(y, x) dz = ∂Rh(y, x) · dx+ ∂Lh(y, x) · dy

which exactly captures the forward mode algorithm. Namely, each line is paired
with a derivative calculation using the partial derivatives, i.e. y = f(x1, x2, . . . , xn)
is paired with

dy =
n∑

i=1
∂if(x1, x2, . . . , xn) · dxi.

for a fresh variable dy. Forward mode AD can also be viewed as arithmetic in
the ring of truncated Taylor series [Griewank and A. Walther, 2008, Ch. 13].

For reverse mode, we observe that the matrix product can be transformed by
transposition

∇(F3 ◦ F2 ◦ F1)(x⃗0)⊺ = ∇F1(x⃗0)⊺ ×∇F2(x⃗1)⊺ ×∇F3(x⃗2)⊺

and that this reverses the order of matrix multiplication. We can again calculate
right-to-left,

X3 = ∇F3(x⃗2)⊺

X2 = ∇F2(x⃗1)⊺ ×X3

X1 = ∇F1(x⃗0)⊺ ×X2

and similarly opt for pre-multiplying by a vector δ⃗x4

∇(F3 ◦ F2 ◦ F1)(x⃗0)⊺ × δ⃗x4 = ∇F1(x⃗0)⊺ ×∇F2(x⃗1)⊺ ×∇F3(x⃗2)⊺ × δ⃗x4

and thus we can define a sequence of intermediate vectors

δ⃗x3 = ∇F3(x⃗2)⊺ × δ⃗x4

δ⃗x2 = ∇F2(x⃗1)⊺ × δ⃗x3

δ⃗x1 = ∇F1(x⃗0)⊺ × δ⃗x2.

The transposes of the Jacobians

∇F1(x⃗0)⊺ =



1 ∂f(a)
1

0
1

1


∇F2(x⃗1)⊺ =



1
1 ∂Rg(x, b)

1 ∂Lg(x, b)
0

1
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∇F3(x⃗2)⊺ =



1
1

1 ∂Rh(y, x)
1 ∂Lh(y, x)

0


are also sparse. Let δ⃗i[a], δ⃗i[b], δ⃗i[x], δ⃗i[y], and δ⃗i[z] for the first, second, third,
fourth, and fifth components of δ⃗xi respectively. Calculating with components,
we see

δ⃗x3 = (δ⃗4[a], δ⃗4[b], δ⃗4[x] + ∂Rh(y, x) · δ⃗4[z], δ⃗4[y] + ∂Lh(y, x) · δ⃗4[z], 0)

δ⃗x2 = (δ⃗3[a], δ⃗3[b] + ∂Rg(x, b) · δ⃗3[y], δ⃗3[x] + ∂Lg(x, b) · δ⃗3[y], 0, δ⃗3[z])

δ⃗x1 = (δ⃗2[a] + ∂f(a) · δ⃗2[x], δ⃗2[b], 0, δ⃗2[y], δ⃗2[z])
and note that each line accumulates derivatives into the arguments of the function
used based on the resulting variable. For example, x = f(a) adds f(a) · δ⃗2[x] to
δ⃗2[a]. We can use mutable variables δa, δb, δx, and δy initialized to 0 to perform
the above calculation

x = f(a)

y = g(x, b)

z = h(y, x)

δy += ∂Lh(y, x) · δz, δx += ∂Rh(y, x) · δz

δx += ∂Lg(x, b) · δy, δb += ∂Rg(x, b) · δy

δa += ∂f(a) · δx
which is exactly reverse mode AD, modulo zeroing out mutable variables. Namely,
each line has a corresponding stateful derivative update which accumulates into
the mutable derivative associated with its arguments, i.e. y = f(x1, x2, . . . , xn) is
paired with

δx1 += ∂if(x1, . . . , xn) · δy, . . . , δxn += ∂nf(x1, . . . , xn) · δy

in the reverse order of the original program.

2.3 Practice

Automatic differentiation can be broadly categorized by mode (i.e. the specific
algorithm) and implementation strategy. Some popular systems use a domain-
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specific language (DSL) strategy where the user specifies a computation graph
which is then the main object from which derivatives are calculated. The compu-
tation graph and resulting derivative graph are often optimized after construction.
The DSL can either be fine-grained (operator level), or coarse-grained (compu-
tational module or model level). The operator level encompasses basic scalar
operations such as addition and multiplication and tensor operations such as
summing along a dimension and taking slices. On the other hand, the module
level includes examples such as fully-connected neural networks and convolutional
layers. Examples of fine-grained systems are Theano [Theano Development Team,
2016], CNTK [Seide and Amit Agarwal, 2016], and TensorFlow [Abadi, Ashish
Agarwal, et al., 2015] and examples of coarse-grained systems are Torch7 [Col-
lobert and Kavukcuoglu, 2011] and Caffe [Jia et al., 2014]. The computation
graph approach, while useful, is usually limited to a subset of the host languages
expressiveness. Thus, computation graph DSLs are generally considered to be
algorithmic differentiation but not automatic differentiation, although this dis-
tinction is somewhat artificial.

Forward and reverse mode are the main categories of AD. There are also
variations of these main modes; we list some examples.

• Sparse versions of forward and reverse mode take advantage the of structure
of the program and requested results to perform less computation [Griewank
and A. Walther, 2008, Ch. 7].

• Reverse mode has a memory footprint which is linear in the length of the
calculation, and so there exists a checkpointed form which re-runs portions
of the original program in exchange for a lower memory footprint [Griewank
and A. Walther, 2008, Ch. 12][Hascoët and Araya-Polo, 2006].

• Forward and reverse mode are in fact extreme choices on a spectrum. A
given first-order program can be viewed as directed acyclic graph with math-
ematical operations as nodes and data dependencies as edges. AD can then
be defined in terms of edge and face eliminations on this graph, with for-
ward and reverse mode being extremal choices in the order of elimination.
[Griewank and A. Walther, 2008, Ch. 9]

• Forward mode can be derived from truncating Taylor series at their linear
terms. Thus, truncating at higher-order terms allows for method similar
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to forward mode which calculates higher-order derivatives. [Griewank and
A. Walther, 2008, Ch. 13] [Barak A Pearlmutter and Jeffrey Mark Siskind,
n.d.]

• Forward and reverse mode can also be layered on top of each other in order
to compute higher-order derivatives [Barak A Pearlmutter and Jeffrey M
Siskind, 2008][Betancourt, 2018].

Beyond the mode used, there are various non-DSL implementation strategies
for AD. A useful categorization is into elemental, compiler-based, source trans-
formations, and operator overloading [Baydin et al., 2018]. Elemental methods
consist of programming with substitute mathematical functions defined by an
AD library. Elemental AD is the simplest method to provide when the language
does not support operator overloading. Examples include WCOMP and UCOMP
[Lawson, 1971]. Compiler-based AD uses special purpose compilers to generate
derivative code during compilation. Examples include Stalingrad [Barak A. Pearl-
mutter and Jeffrey Mark Siskind, 2008], Tangent [Merriënboer, Wiltschko, and
Moldovan, 2017], SLANG [Thames, 1969], and PROSE [Pfeiffer, 1987]. Source
transformation methods take program text and generates new program text con-
taining the old code which also computes derivatives. Examples include ADIFOR
[C. Bischof et al., 1996], ADIC [C. H. Bischof, Roh, and Mauer-Oats, 1997], and
Tapenade [Pascual and Hascoët, 2008; Hascoët and Pascual, 2013]. Finally, oper-
ator overloading simply overloads the chosen mathematical functions to effectively
perform the elemental method more ergonomically. Examples include ADOL-C
[Andrea Walther, 2009], the ad package for Python3, the ad package for Haskell4,
and the DiffSharp package for F# and C# [Baydin et al., 2018].

The last distinction we make cuts across our other categorizations. Some AD
systems are define-then-run, or static, whereby a the program written is stati-
cally analyzed and transformed into a new program. Static approaches include
DSL and source transformation techniques, and are often the fastest methods
due to optimization opportunities. Other AD systems are define-by-run, or dy-
namic, where the derivative is calculated as the defined program runs. Dynamic
approaches are usually slower but more flexible and interactive, and includes
methods such as elemental and operator overloading techniques.

3https://pypi.org/project/ad/
4https://hackage.haskell.org/package/ad

https://pypi.org/project/ad/
https://hackage.haskell.org/package/ad
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2.4 Theory

The straight-forward derivation shown above for forward and reverse mode does
not handle programming language features such as control flow, impurity, and
higher-order functions. There exist libraries and languages which support these
features, but features such as higher-order functions can cause subtle bugs [Manzyuk
et al., 2012]. Hence, there has been a recent rise in interest for denotational se-
mantics for AD.

The differential lambda-calculus of Ehrhard and Regnier extends lambda-
calculus with differential operators [Ehrhard and Regnier, 2003], and these oper-
ators relate to substitution. Namely, for terms t, u and i ∈ N>0, we have a term
Dit ·u which is the partial derivative of t at argument i evaluated at u, and when
t ≡ λx.s, Di(λx.s) · u reduces to λx.

(
∂s
∂x
· u
)
. The operation ∂s

∂x
· u is a linear

version of beta-reduction, which substitutes u for a linear occurrence of x in s.
There may be multiple occurrences of x in s, and so differential lambda-calculus
also allows finite linear combinations of terms. The subsequently introduced dif-
ferential categories of [R. F. Blute, J. R. B. Cockett, and R. A. G. Seely, 2006] is
a valid semantics for the differential lambda-calculus, and differential categories
do in fact relate to smooth functions, but it is not clear to this author if a di-
rect connection between the differential lambda-calculus and AD has been made.
There have been other categorical models of differentiation which have found use
for AD, such as cartesian differential categories [R F Blute, J R B Cockett, and R
A G Seely, 2009], change actions [Alvarez-Picallo and Ong, 2019], tangent bundle
categories [Rosický, 1984; J. R. B. Cockett and Cruttwell, 2014], and diffeological
spaces [Huot, Staton, and Vákár, 2020].

The cartesian category framework used by [Elliott, 2018] was a mix of theory
and practice, but was heavily influenced by category theory as an organizational
framework. It can be seen as a family of semantics for first-order programs.
Another simple extension to a pure base language was introduced by [Barak A.
Pearlmutter and Jeffrey Mark Siskind, 2008]. It does not included denotational
semantics, but it showed how to implement AD in a lightly augmented lambda-
calculus.

A fully fledged account of operational and denotational semantics for reverse
mode AD has been given by [Abadi and Plotkin, 2020]. Their language is first
order, but includes conditionals and recursion. They also prove adequacy theo-
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rems, and this holistic approach is a first for AD. For the higher-order setting,
the pair of works [Huot, Staton, and Vákár, 2020] and [Brunel, Mazza, and Pa-
gani, 2020] provide denotational semantics and correctness in the higher order
case under a different set-up. More recently, [Vákár and Smeding, 2022] have
described and proved correct both forward and reverse mode AD in the pres-
ence of higher-order function. Furthermore, they implement their algorithms as
a source-to-source transformation on Haskell.

Finally, [F. Wang, X. Wu, et al., 2018] shows how to implement reverse mode
with delimited continuations. The work does not contain a denotational seman-
tics, but their methods inspired our approach to the denotational semantics AD
via algebraic effects and handlers.



Chapter 3

Effects and Handlers

Clove

Algebraic effects and handlers are a form of control flow and method of ma-
nipulating side-effects. Algebraic effects were introduced by [Plotkin and Power,
2001a] in order to incorporate operational semantics into Moggi’s computational
lambda-calculus based on monads. They showed their semantics is adequate for
a non-recursive PCF1 and how to use this proof to prove adequacy for specific
effects. A second paper in [Plotkin and Power, 2001b] identified the generic ef-
fect formulation of algebraic effects, the more common formulation today. This
identification strengthened the connection between algebraic effects and Lawvere
theories. Plotkin and Power also speculated that the algebras of the monad in-
duced by operations could be used to generalize their results to systems such as
call-by-push-value (CBPV), which has indeed been achieved by [Kammar, 2014].

1Gordon Plotkin (Dec. 1977). “LCF considered as a programming language”. In: Theoretical
Computer Science 5.3, pp. 223–255. issn: 0304-3975. doi: 10.1016/0304-3975(77)90044-5.
url: https://www.sciencedirect.com/science/article/pii/0304397577900445 (visited
on 08/25/2023).
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The idea of handlers for effects was introduced by [Plotkin and Pretnar, 2009].
They observe that handlers can be considered as destructors for effects while
algebraic operations are constructors. We will give a short introduction on pro-
gramming with effects and handler systems, an outline of the design space of such
systems, and an overview of the languages we will use.

3.1 Programming with Effects and Handlers

For a tutorial on algebraic effects we suggest [Bauer, 2019] and for effect handlers
we suggest [Pretnar, 2015]. We will give a short informal introduction to program-
ming with effects and handlers by explaining examples in the Koka programming
language [Leijen, 2014; Leijen, 2017].

Our first example will show how effects and handlers generalize exceptions:
1 effect ctl exception (info : string ) : a

2
3 fun divide (x, y)

4 if y == 0 then exception (" Divided by zero ") else x / y

5
6 fun main ()

7 (

8 handler

9 ctl exception (info) ->

10 print (" Exception : " ++ info)

11 ) {

12 val a = divide (4, 2)

13 print ("’a’ is " ++ show(a) ++ ", ")

14 val b = divide (4, 0)

15 print ("’b’ is " ++ show(b))

16 }

Line 1 defines a new effectful operation exception which takes a string and produces
a value of any type a. The function divide on lines 3 and 4 defines a division
function which throws an exception when we divide by 0. The main function on
lines 6 to 16 consists of two main parts. The first part is the handler on lines
7 to 11, which defines how to handle the exception effect in a similar manner
to try-catch blocks in other languages. The second part on lines 11 to 16 is a
block (or nullary function) containing the main body. We make use of printing
throughout, which is a built-in effect.

When the main function executes, the main body of the function is passed
to the handler, thus delimiting the scope of the handler. The body will then
execute, with the call to divide on line 12 succeeding, and subsequently ’a’ is 2,
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is printed. The second call to divide on line 13 tries to divide by 0, and thus
the computation exception("Divided by zero") is executed. Control then propagates
outward from this execution site to the handler, which consists of exactly one
case. The argument of exception is bound to info, and the body of the case is
executed, printing Exception: Divided by zero. Note that the print statement on line
15 is not executed. In Koka, handlers are first class, and so the following program
is equivalent:

1 effect ctl exception (info : string ) : a

2
3 val print - exception = handler

4 ctl exception (info) ->

5 print (" Exception : " ++ info)

6
7 fun divide (x, y)

8 if y == 0 then exception (" Divided by zero ") else x / y

9
10 fun main ()

11 with print - exception

12 val a = divide (4, 2)

13 print ("’a’ is " ++ show(a) ++ ", ")

14 val b = divide (4, 0)

15 print ("’b’ is " ++ show(b))

The with syntax is sugar for passing the following lines as thunk, i.e. with f; <body>

is equivalent to f(fn() {<body>}).
The important difference between exceptions and effect handlers is that the

latter can resume execution after an effect is handled. Consider the following
program using an effect default, parameterized by the type a via <a>, which we will
use to provide a default value:

1 effect <a> ctl default () : a

2
3 fun main ()

4 with ctl default () ->

5 resume (1)

6 val a = default ()

7 val b = default ()

8 print (show(a : int) ++ ", " ++ show(b : int ))

Line 1 declares our effect. The main function first installs a handler, and then uses
the default effect. As main is executed, the handler is passed lines 6 to 8, which then
begin to execute. The call to default on line 6 transfers control to the handler,
which subsequently causes the body on line 5 to execute. The resume keyword is a
function which has bound the rest of the computation, i.e. it is equivalent to
fun resume (x)
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val a = x

val b = default ()

print (show(a : int) ++ ", " ++ show(b : int ))

Thus, the program then continues from line 6 where the value of a is 1. The same
process happens again for b, and so the program prints 1, 1.

Different effects and handlers can be combined, for example our exception and
default effects can be used together:

1 effect <a> ctl default () : a

2 effect ctl exception (info : string ) : a

3
4 fun divide (x, y)

5 if y == 0 then exception (" Divided by zero ") else x / y

6
7 fun combined ()

8 divide ( default (), default ())

9
10 fun main () : console () {

11 with ctl exception (info) -> print (" Exception : " ++ info)

12 with ctl default () -> resume (0)

13 print ( combined ())

14 }

When the main function is run, the handlers on lines 11 and 12 are used. Note that
they handle their effects through function call boundaries. The result of calling
main is that Exception: Divided by zero is printed.

An important aspect of handlers is that they have scope. Consider the fol-
lowing program:

1 effect <a> ctl default () : a

2
3 fun main ()

4 val a =

5 with ctl default () -> resume (1)

6 default ()

7 val b =

8 with ctl default () -> resume (2)

9 default ()

10 print (show(a : int) ++ ", " ++ show(b : int ))

There are two handlers, the first on line 5 and the second on line 8. The calls
to default on lines 6 and 9 are scoped by the first and second handler respec-
tively. Thus, calling main results in 1, 2 being printed. The ability to give an
effect or program different interpretations through the use of handlers is one the
key features of effect and handlers systems, as it aids in composition, abstrac-
tion, and reusability. Likewise, the scoped nature of effects and handlers allows
interpretations to be local and more tractable to reason about.
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Handlers can model state. The following implements state in the standard
state-passing function style:

1 effect state <s>

2 ctl get () : s

3 ctl put(s : s) : ()

4
5 val runState = handler

6 return (x) -> fn(s) {(x, s)}

7 ctl get () -> fn(s) { resume (s)(s)}

8 ctl put(s ’) -> fn(_) { resume (())(s ’)}

9
10 fun comp ()

11 val x = get ()

12 put(x + 1 : int)

13 val y = get ()

14 put(y + y : int)

15 get ()

16
17 fun main ()

18 val res =

19 with runState

20 comp ()

21 res (1)

We begin by defining the state effect on lines 1 to 3. The runState handler on lines
5 to 8 produces a function which threads the state through the computation.
On line 6 we use a return clause, which is matched upon when the computation
passed to the handler terminates in a value. Values embedded into computations
are essentially the base case of computations. The function comp on lines 10 to 15
uses our effect, and the function main calls the function created by handling comp

with runState, giving a result of (4, 4).
Our last example shows the interesting control flow achievable with effects

and handlers. Using the same state effect, consider the following handler:

val logState = handler

return (x) -> fn(_) {(x, [])}

ctl get () -> fn(s) { resume (s)(s)}

ctl put(s ’) -> fn(_) {val (x, ss) = resume (())(s ’); (x, Cons(s’, ss ))}

We now log the state every time it is changed. In the case where we handle put,
note that we must run the resumption in order to get a list of past changes before
we can place the new state at the head of the list. Running main with logState

instead of runState produces (4, [2, 4]). Note that the early state of 2 has been
added to the list after the later state of 4. This behavior is due to executing code
after the resume statement, and will be integral to reverse mode AD.
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3.2 Design Space

There are many different design choices for effects and handlers. We do not
aim to provide a full survey, and so will only cover a few of the most important
differences which will be visible across the four languages we have chosen:

Typed vs. Untyped: a type system may have specific features for effects;

Shallow vs. Sheep vs. Deep: shallow handlers do not reinstall any handler,
sheep must install a handler, and deep handlers install themselves;

Forwarding vs. Non-forwarding: effect handlers may be responsible for every
effect in their scope or only a subset while forwarding the rest;

Static vs. Generative: it may be possible to generate new effects or effect in-
stances dynamically during program execution;

Single-shot vs. Multi-shot: the continuation captured for the handler may
have restrictions on the number of times that it is used;

Effect type systems: there are many variations of effect type systems such as
different levels of polymorphism and the underlying type theory; and

Manipulation of effects: when multiple instances of one effect exist, there are
differing approaches for encapsulation and management.

The languages which we will use cover many of the above considerations, thus
showing that implementing AD does not overly depend on any one choice. How-
ever, some features benefit some algorithms. Additionally, type systems help
ensure correctness and can help avoid a class of AD specific errors.

Typed vs. Untyped

It is not necessary to have an effect type system in an effect and handler system.
One advantage of not having an effect type system is that in some cases this
allows one to macro translate between effect handlers and other control primi-
tives as shown by [Forster et al., 2019]. In their work, they consider effects and
handlers, monadic reflection, and delimited control without answer-type modifi-
cation. All three can be macro translated in the untyped setting. When given
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type systems, they provide proofs of non-existence for some translations, and
notably the theorems rely on the specific type systems defined.

Type systems are effective at recording static information. For effect and
handler systems, they can be used to indicate effects which may occur or must
occur. Furthermore, type systems can provide guarantees for which effects are
handled. They can also be used to ensure that there are no unhandled effects at
the top level of the program. We will examine different type systems further on.

Shallow vs. Sheep vs. Deep

A continuation is captured when an effect is handled. In analogy to various de-
limited control operators, the handler may or may not be reinvoked to handle the
remaining effects produced when the continuation is called. There are three usual
choices, namely shallow, sheep, and deep. Shallow handlers are not reinvoked,
sheep handlers must specify a handler for the continuations effects but it need
not be the same handler, and finally deep handlers are always reinvoked. Shal-
low and deep handlers are inter-expressible up to some administrative reductions
given an adequate background language, as shown by [Hillerström and Lindley,
2018]. Expressing shallow handlers using deep handlers is not very succinct, but
deep handlers have the advantage of an inbuilt inductive structure.

Forwarding vs. Non-forwarding

A valuable feature of user-defined effects and handlers is modularity and multiple
effects. Given multiple distinct effects, it is often useful for a handler to only
handle a few effects or only one effect. A system with forwarding handlers allows
a handler to automatically leave unwanted effects unhandled, delegating them to
the enclosing handlers. Non-forwarding handlers intercept all effects. These han-
dlers can of course re-perform the same effect they have handled, thus modelling
forwarding handlers, but this can be error prone by requiring the programmer to
manually add forwarding code to all handlers.

Single-shot vs. Multi-shot

The body of a handler has access to the delimited continuation created during
effect handling. There can be restrictions on the use of this continuation, often
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the restriction is that it can be used at most or exactly once. Such a restriction
is termed single-shot, in contrast to multi-shot. The single-shot restriction may
allow for more efficient implementations, or may be required for correctness in the
presence of other language features or compiler optimizations. On the other hand,
multi-shot handlers are more powerful, allowing for effects such as backtracking,
non-determinism, and memoization. However, they require an overhead due to
the delimited continuation being retained.

Static vs. Generative

Effects can be specified statically, i.e. at compile time, or can be generated at
runtime. Static effects can aid in reasoning and optimization during compilation.
For instance, effects can be declared to be single-shot, allowing for the generation
of more efficient code. Generative effects can provide extra flexibility and power.
For example, local state with reference cells can be implemented in some systems
supporting generative effects.

Effect type systems

There are many different approaches to effect type systems. The essential respon-
sibility of such a system is to record what effects may or must occur. Most systems
are based on row or record types, examples of such include systems such as [Rémy,
1994], [Berthomieu and le Moniès de Sagazan, 1995], and [Leijen, 2005]. The sys-
tem of Rémy uses a type level function from field labels to either a type of said
field or a singleton type denoting absence, and this system allows records to have
principal types. Berthomieu and le Moniès de Sagazan give a system of tagged
types combining aspects of row and record types which allows polymorphism. Fi-
nally, the approach of Leijen allows duplicate labels, which is particularly useful
for effects. Effect type systems can also support effect polymorphism, allowing
type signatures to quantify over effects. For example, a mapping function on lists
will only use the effects of its function argument, and so it is desirable to have a
type signature recording this. Finally, it is possible in some systems for the effect
operations themselves to be polymorphic. We will explore relevant features in
more detail later.
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Manipulating of effects

Managing effects used in a program is important for compositionality, abstraction,
and usability. One method of manipulation is dynamically generating first-class
instances, in a similar way to reference cells. The instances can be kept private,
and thus limit what code can call the generated effect. In languages with type
systems, handling an effect can remove the effect from the effect type. The code
using the result of the handler is thus unaware and unable to handle the removed
effect, enforcing encapsulation. Such languages can also allow duplicate effects at
the type level, which often occurs when nested programs use the same effect. Type
and term level masking (or injection) can reorder or combine these duplications,
ensuring that the correct handler is invoked. Finally, some languages introduce
named handlers to allow the differentiation between handlers of the same effect.
Names can be used in either a lexical or dynamic fashion.

Note 3.2.1. One design consideration we have not covered is that of scoped
effects introduced in [N. Wu, Schrijvers, and Hinze, 2014]. In many effect handler
languages, effectful operations can take non-ground values as arguments, and thus
can take suspended computations as arguments. When a handler handles these
effects, there is no requirement that the handling of computations passed as
arguments are handled by the selfsame handler. Scoped effects and handlers of
them [Yang et al., 2022] help structure such handlers, aiding reasoning. None of
the languages we will use support scoped effects, but some of our advanced AD
mode implementations involve operations which have computations as arguments.
Thus, scoped effects and handlers may be helpful in better structuring these
implementations.

3.3 Overview of Languages Used

We will use four languages to implement a variety of AD algorithms: Frank
[Lindley, McBride, and McLaughlin, 2017; Convent et al., 2020], Eff [Bauer and
Pretnar, 2014; Bauer and Pretnar, 2015], Koka [Leijen, 2014; Leijen, 2017], and
OCaml [K. Sivaramakrishnan et al., 2021; Leroy et al., 2022]. Each language
has different design choices for effects and handlers, allowing us to examine their
impact by comparing and contrasting.
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3.3.1 Frank

The Frank language was created in [Lindley, McBride, and McLaughlin, 2017]
and extended by [Convent et al., 2020]. It compiles to an interpreted effect
and handler language called Shonky [McBride, 2023]. Frank is a strict functional
programming language inspired by CBPV with a bidirectional effect type system.
In Frank handlers are shallow, handlers are forwarding, continuations are multi-
shot, and effects are static. Uniquely among our considered languages, Frank
generalizes handlers to so-called multi-handlers, which handle multiple effectful
computations at once. We have included Frank due to its unique type system
and inclusion of shallow handlers.

We will examine Frank’s type system through various examples taken from
[Lindley, McBride, and McLaughlin, 2017]. Let us define a state effect
interface State S =

get : S

| put : S -> Unit

parameterized by a type S with operations get and put. An example program using
this effect is:
fst : {X -> Y -> X}

fst x y = x

postAcc : {Int -> [ State Int] Int}

postAcc x = fst get! (put (get! + x))

Curly braces denote computations, which functions are in Frank. The function
fst evaluates all its arguments left-to-right, and nullary computations like get are
evaluated with !. Thus, the function postAcc gets the state and then accumulates its
argument into the state. The type signature of postAcc contains the row [State Int],
meaning that the calling context must provide at least the effect State Int. The
standard state-passing handler for state is defined as:
state : {S -> <State S> X -> X}

state _ x = x

state s <get -> k> = state s (k s)

state _ <put s -> k> = state s (k unit)

Frank combines handlers and functions into one construct. The first argument
of state is the state being passed, and none of the effects of this argument are
handled. The second argument is the computation being handled, specifically
only the effect State S is handled, recorded in the type as <State S>. Each operation
is matched on, and the continuation is captured as k. As handlers in Frank are
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shallow, the handler then reinvokes itself.
Handlers are invoked by application, in Frank there is no distinction between

functions and handlers. To wit, given
index : {List X -> List (Pair Int X)}

index xs = state 0 (map {x -> pair ( postAcc 1) x} xs)

the computation evaluates as:

index "abc" ⇒ [( pair 0 ’a’), (pair 1 ’b’), (pair 2 ’c’)]

Note that the State S effect (where S is instantiated to Int) does not appear in the
type signature of index. This is because the handler state handles it.

The definition of index uses the map function, which is defined as
map : {{X -> Y} -> List X -> List Y}

map f [] = []

map f (x :: xs) = f x :: map f xs

The function f has no visible effects, even though in index the argument is effectful.
The above type signature is actually shorthand for
map : {{X -> [e|] Y} -> List X -> [e|] List Y}

where e is an effect variable representing a row. Thus, map is effect-polymorphic,
and requires exactly the effects of its argument as expected.

Frank effect operations can be polymorphic, for example the aborting effect
is
interface Abort = abort X : X

where abort is a polymorphic nullary effect. Furthermore, ML-style references are
possible with the following definition
interface RefState =

new X : X -> Ref X

| read X : Ref X -> X

| write X : Ref X -> X -> Unit

The above effect is a built-in effect and is automatically handled by the interpreter
in a top-level computation.

Another feature of Frank is the ability to have multiple instances of the same
effect in the effect type and manipulate the handling of such duplicates. Consider
the following two functions
sqrt: {Int -> [ Abort ] Int}

parseInt : { String -> [ Abort ] Int}
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which computes a square root (and aborts on negative numbers) and parse an
integer (and aborts on invalid input) respectively. We can combine these two
functions
conflatedComp : { String -> [ Abort ] Int}

conflatedComp s = sqrt ( parseInt s)

where the computation aborts if the input cannot be parsed or if it is successfully
parsed but is negative. The effect type [Abort] contains one instance of the effect
Abort, thus a handler would only see one kind of abort command. We can differen-
tiate between the two different types of failure using a mask or adaptor, resulting
in
distinctComp : { String -> [Abort , Abort ] Int}

distinctComp s = sqrt (<Abort > ( parseInt s))

The mask <Abort> changes the effect type [Abort, Abort] to [Abort] by removing the
inner/right instance. The type system of Frank says that an operation always
corresponds to the innermost effect instance, and so we have now distinguished
between the two failure modes. Frank has more effect manipulation features
which we will explain when they arise.

Finally, we note that Frank does not have floating point operations, the oper-
ator := for setting references, or the operator @ for getting reference values. Thus,
we have patched Frank to include these features. The patch can be found in
Appendix A, and should be applied to commit b5585a050221abfe03e5b6824cd1dd2b516a27f2.
Our patch builds upon the patch for adding floating point operations created by
Leo Poulson2.

3.3.2 Eff

The Eff language was created in [Bauer and Pretnar, 2014; Bauer and Pretnar,
2015]. The 3.0 version of the language matches the cited papers, whereas the
newest 5.0 version has some differences. Thus, we will use the 3.0 version and
shall mean this version when Eff is referred to unqualified.

Eff is an ML-style functional programming language with an interpreter writ-
ten in OCaml. It is a typed language, and while the specification in [Bauer and
Pretnar, 2014] contains effect annotations in types, the implemented language
does not, as the effect system can infer such annotations. In, Eff, handlers are

2https://github.com/frank-lang/frank/pull/6

https://github.com/frank-lang/frank/pull/6
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deep, handlers are forwarding, continuations are multi-shot, and effect instances
can be dynamically created. Operations in Eff cannot be polymorphic.

Let us consider some Eff example code. We take the definition of the state
effect from the built-in definitions
type ’a ref = effect

operation lookup : unit -> ’a

operation update : ’a -> unit

end

where the effect ref is parameterized by the variable ’a. Effect instances are first-
class values in Eff, and so when we define our handlers, a value of type ’a ref will
be an argument. The standard state handler is defined as
let state r x = handler

| val y -> (fun _ -> y)

| r# lookup () k -> (fun s -> k s s)

| r# update s’ k -> (fun _ -> k () s ’)

| finally f -> f x;;

were r is the effect instance and x is the initial state. Note that an operation,
e.g. lookup, is associated to a specific instance, e.g. r#lookup. The finally clause is
a post-processing step that applies the function created during handling to the
initial state. Handlers are then invoked using a with clause, for example
let r = new ref in

with state r x handle

<computation >

where the new keyword is used to create a new ref instance. A unique feature of
Eff is resources based on handlers. The function which creates a fresh mutable
state references is defined as
let ref x =

new ref @ x with

operation lookup _ @ x -> (x, x)

operation update y @ _ -> (() , y)

end

with the special @ syntax. When an operation corresponding to a ref instance
created using this function is invoked, the above handler is invoked. The handler
has a state, initialized to the argument x, attached to it, which is the variable
after @ in each case. A pair consisting of the operations result and the new state
is then returned.

The masking construct of Frank is not necessary in Eff because Eff has no
effect type system in the implementation. The use case for masking can easily
be achieved by using the operation corresponding to the desired instance, which
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would need to be passed along to the call site. We will later see that coding
discipline and helper functions can aid composability by closely matching the
creation and use of instances.

Eff has small and big step operational semantics, as well as denotational se-
mantics which is sound and adequate with respect to the operational semantics.
Furthermore, the denotational semantics is similar to the approach we will use
for correctness proofs. Additionally, Bauer and Pretnar provide an induction
principle for reasoning about effects which is again similar to our proofs. It is for
these reasons that we include Eff as it most closely matches our mathematical
considerations.

3.3.3 Koka

The Koka language was created in [Leijen, 2014; Leijen, 2017]. It is a strongly-
typed functional language with an effect type system which has an interpreter
and can compile to C, C#, Javascript, and Wasm. In Koka, handlers are deep
by default, handlers can be forwarding or non-forwarding, continuations can be
multi-shot, and effects are static. There is undocumented support for shallow
handlers and named handlers (giving dynamic effects), but we will make use of
neither. Furthermore, Koka lets the programmer annotate effect definitions with
continuation multiplicity, which can force continuations to be used exactly once.
Operations in Koka can be polymorphic. Koka is included to exhibit different
effect type system choices and to show the effect of tracking continuation re-use,
as well as being quite performant for a research language.

Let us define a state effect
effect state <s>

ctl get () : s

ctl put(s : s) : ()

which is parameterized by the state type s. The ctl keyword denotes a “control”
effect, meaning that the continuations available when handling this effect are
multi-shot. The standard state handler is then defined as
val stateHandler = handler

return (x) -> fn(s) {(x, s)}

ctl get () -> fn(s) { resume (s)(s)}

ctl put(s ’) -> fn(_) { resume (())(s ’)}

where we have defined stateHandler as a value using the handler keyword. The resume

keyword gives the captured continuation as a first-class function. Note that the



3.3. Overview of Languages Used 33

type of this value is forall<a,b>. (() -> (state<a>) b) -> ((s : a) -> (b, a)), i.e. it is a
function which takes in a thunk. Thus, handling is done via application. It is
preferred in Koka to define handlers using the function syntax, and so we define
fun state ( action : () -> <state <s>> a) : (s -> (a, s))

with handler

return (x) -> fn(s) {(x, s)}

ctl get () -> fn(s) { resume (s)(s)}

ctl put(s ’) -> fn(_) { resume (())(s ’)}

action ()

where we use the with syntax. This syntax is sugar for passing the following
lines as thunk, i.e. with f; <body> is equivalent to f(fn() {<body>}). Furthermore, it
is preferred in Koka not to use parameter passing, but to instead use lexically
scoped local mutable state, resulting in
fun state ’( init : s, action : () -> <state <s>> a) : <div > (a, s)

var s := init

with handler

return (x) -> (x, s)

ctl get () -> resume (s)

ctl put(s ’) -> {s := s ’; resume (())}

action ()

where var declares a locally mutable variable. The return signature now contains
the div effect, which witnesses that local state can cause divergence. Programs
without the div effect are terminating. Observe that there is no effect annotation
for local state in the type signature. This is because Koka automatically erases
universally quantified local state, justified using the rank-2 polymorphism ap-
proach of [Launchbury and Peyton Jones, 1994]. Koka also has a built-in global
mutable state with ML-style references.

The handlers we have written so far are all non-forwarding handlers by virtue
of the types we have given them. We can use effect polymorphism to turn them
into forwarding handlers. Changing the type signature of state’, we get
fun state ’’( init : s, action : () -> <div ,state <s >|e> a) : <div|e> (a, s)

var s := init

with handler

return (x) -> (x, s)

ctl get () -> resume (s)

ctl put(s ’) -> {s := s ’; resume (())}

action ()

which is parametric in the effect row e. The effect type system is based on the
row type system of [Leijen, 2005]. This system allows for duplicate effects, and
the leftmost instance corresponds to the innermost handler. Note that Koka can
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also infer effects, and the above is the inferred one. Thus, in non-annotated Koka
where handlers are written in the function style, handlers are forwarding.

Koka also has effect manipulation features, although the basic operations are
less general than those of Frank. For any effect label l, where is an operation
mask<l> : (action: () -> e a) -> <l|e> a which removes the effect l from the calling en-
vironment of action. For completeness, we note that there is another effect ma-
nipulation operation mask behind<l> : (() -> <l|e> a) -> <l,l|e> a, although we will not
make use of it.

3.3.4 OCaml

The OCaml language was created in 1996 by Xavier Leroy, Jérôme Vouillon,
Damien Doligez, and Didier Rémy3, and is currently worked on by many others
including [Leroy et al., 2022]. Effect handlers were added to OCaml as of version
5.0 by [K. Sivaramakrishnan et al., 2021] and others, and we mean this version
when talking about OCaml unqualified.

OCaml is a strongly-typed programming language with multiple paradigms
including functional, imperative, and object-oriented. It is the most mature and
widely used out of the languages we consider. In OCaml, handlers can be sheep
or deep, handlers are forwarding by convention, effects are generative via the
module system, and continuations are single-shot. Note that what we refer to
as sheep, OCaml refers to as shallow. It is possible to intercept all effects with
a handler, but then one must provide a value of type ∀a.a, i.e. loop or throw
an exception, or discontinue the continuation. There is currently no effect type
system in OCaml 5.0, but various OCaml contributors wish to add one in the
future4. Effects can be manipulated with the module system, giving a similar
result as in Eff. Operations can be polymorphic. We have chosen to include
OCaml due to its performance, maturity, and scale of use.

We will assume that the reader is familiar with OCaml sans effects and han-
dlers, and so we will only cover these features. Let us consider again the state
effect, where our code will be taken from the OCaml effects example repository5.
We first define a some modules and a functor:

3https://ocaml.org/about, retrieved 03-08-2023
4Private communication.
5https://github.com/ocaml-multicore/effects-examples/blob/b7f805b0b0708d425

3a9c75d2d0dd29637cc6033/state.ml, retrieved 03-08-2023

https://ocaml.org/about
https://github.com/ocaml-multicore/effects-examples/blob/b7f805b0b0708d4253a9c75d2d0dd29637cc6033/state.ml
https://github.com/ocaml-multicore/effects-examples/blob/b7f805b0b0708d4253a9c75d2d0dd29637cc6033/state.ml
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module type TYPE = sig

type t

end

module type STATE = sig

type t

val get : unit -> t

val set : t -> unit

val run : init:t -> (unit -> ’a) -> t * ’a

end

module type CELL = functor (T : TYPE) -> STATE with type t = T.t

Modules of type TYPE contain the type of the state we wish to use, modules of
type STATE provide the operations and an associated handler, and finally functors
of type CELL let us generate new instances of our state effect. We then define an
implementation of CELL using the state-passing style handler:
open Effect

open Effect .Deep

module StPassing : CELL = functor (T : TYPE) -> struct

type t = T.t

type _ Effect .t += Get : t Effect .t

type _ Effect .t += Set : t -> unit Effect .t

let get () = perform Get

let set y = perform (Set y)

let run (type a) ~init (main : unit -> a) : t * a =

match_with main () {

retc = (fun res x -> (x, res ));

exnc = raise ;

effc = fun (type b) (e : b Effect .t) ->

match e with

| Get -> Some (fun (k : (b, t -> (t * a)) continuation ) ->

fun (x : t) -> continue k x x)

| Set y -> Some (fun k ->

fun (_x : t) -> continue k () y)

| _ -> None

} init

end

The definition begins by opening the standard library modules for effects. We
then add our operations to the effect type Effect.t, an extensible variant type, and
define the operations. Effects are handled using the match_with function, the first
argument is the function to be called which produces effects, the second argument
is the input to said function, and the third argument is the handler. A handler is
a record type with three fields, retc gives the return clause for values, exnc says how
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to handle exceptions, and the effc says how to handle each operation. We pattern
match on the Effect.t type, where the final wildcard case is needed as Effect.t is
an extensible variant. When Some c is returned, the effect is handled with c, and
when None is returned, the effect is propagated onward.

Defining effects and handlers as above allow effects to be generative:
module IntCell1 = StPassing ( struct type t = int end)

module IntCell2 = StPassing ( struct type t = int end)

let main () =

let x = IntCell1 .get () + 1 in

IntCell2 .set x

let res = (* gives (0, (1, ())) *)

IntCell1 .run ~init :0 (fun () ->

IntCell2 .run ~init :0 main

)

The above snippet creates two instances of the state effect and shows that they
can be used together without interference. Thus, because modules are first-class
in OCaml, so are effect instances.
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Chapter 4

Implementation of Standard AD
Modes

Cumin

Automatic differentiation is best seen as a family of algorithms. We will
make a distinction between the most well known and used variants and the lesser
known and used ones. We shall refer to the former as standard and the later as
advanced, but this dichotomy is informal. Each AD algorithm has been imple-
mented in Frank, Koka, Eff, and OCaml. We will chiefly explain the algorithms
in Frank, while highlighting features of each algorithm that are meaningfully dif-
ferent between implementations. Most such differences are related to the presence
of type systems. The remaining implementations can be found in Appendix A.

Common among all the algorithms is an effect for smooth functions. A func-
tion f : Rn → Rm is called smooth when it has all partial derivative of all orders,
meaning that the partial derivatives and Jacobian of such an f are also smooth.
Thus, smooth functions are closed under differentiation, and are the natural class

39
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to consider when creating compositional AD algorithms. Of course, we cannot ex-
press all smooth functions, and so we choose a subset of smooth functions closed
under differentiation as a family. The minimal collection of smooth functions is
addition, multiplication, and constant functions taking values in the non-negative
integers. For simplicity, we choose only this minimal collection extended with
unary negation, but as we will see sections 6.1 and 6.3, we can support many
more smooth functions such as exponentials, logarithms and trigonometric func-
tions. Note that if we would include, for example, the function sin(x), we would
also need to include the function cos(x) because ∂/∂x(sin(x)) = cos(x). Alterna-
tively, because cos(x) = sin(x + π/2), we could leave cos(x) out, but in practice
redundant functions are included for clarity and numerical considerations.

Thus, we begin by defining data types enumerating what family of functions
we wish to use, split by the number of arguments each function takes. Next,
we define our effect and helper functions. Note that Frank does not allow user
defined infix operators, and so we use one letter functions instead.

Listing 4.1: Smooth effect (Frank)
1 data Nullary = constE Float -- Nullary functions

2 data Unary = negateE -- Unary functions

3 data Binary = plusE | timesE -- Binary functions

4
5 interface Smooth X =

6 ap0 : Nullary -> X -- Apply a nullary function

7 | ap1 : Unary -> X -> X -- Apply a unary function

8 | ap2 : Binary -> X -> X -> X -- Apply a binary function

9
10 c : Float -> [ Smooth X] X

11 c i = ap0 ( constE i)

12
13 n : X -> [ Smooth X] X

14 n x = ap1 negateE x

15
16 p : X -> X -> [ Smooth X] X

17 p x y = ap2 plusE x y

18
19 t : X -> X -> [ Smooth X] X

20 t x y = ap2 timesE x y

The Smooth effect is parameterized by a type X which will be instantiated with
a different type depending on the AD algorithm. This parameterization is one
of the key aspects of the compositionality of our system. Each AD mode with
instantiate X to some new type, but often this new type has a further free type
variable, which in turn can be instantiated by another AD mode, thus allowing
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the combination of modes. We also define the functions c, n, p, and t as shorthand
for the smooth effects we can use.

Next, we define helper functions for calculating derivatives, used in defining
handlers, as well as an example term. We also define a helper data type Arg to
specify which argument of a binary function we are differentiating with respect
to.

Listing 4.2: Helper functions (Frank)
22 der1 : Unary -> X -> [ Smooth X] X -- ∂

∂x
(u(x))

23 der1 negateE x = n (c 1.0) -- ∂(−x)/∂x = −1
24
25 data Arg = L | R -- Derivative w.r.t. the left or right argument

26
27 der2 : Arg -> Binary -> X -> X -> [ Smooth X] X -- ∂

∂xarg
(b(xL, xR)), for xL = x, xR = y

28 der2 L plusE x y = c 1.0 -- ∂(x + y)/∂x = 1
29 der2 R plusE x y = c 1.0 -- ∂(x + y)/∂y = 1
30 der2 L timesE x y = y -- ∂(x · y)/∂x = y

31 der2 R timesE x y = x -- ∂(x · y)/∂x = y

32
33 dder1 : Unary -> X -> [ Smooth X] X -- ∂2

∂x2 (u(x))
34 dder1 negateE x = c 0.0 -- ∂2(−x)/∂x2 = 0
35
36 -- ∂2

∂xarg1 ∂xarg2
(b(xL, xR)), for xL = x, xR = y, check if xL ≡ xR

37 dder2 : Bool -> Arg -> Arg -> Binary -> X -> X -> [ Smooth X] X

38 dder2 true L _ plusE x y = c 0.0 -- ∂2(x + x)/∂x2 = 0
39 dder2 true R _ plusE x y = c 0.0 -- ∂2(y + y)/∂y2 = 0
40 dder2 false L L plusE x y = c 0.0 -- ∂2(x + y)/∂x2 = 0
41 dder2 false L R plusE x y = c 0.0 -- ∂2(x + y)/∂x∂y = 0
42 dder2 false R L plusE x y = c 0.0 -- ∂2(x + y)/∂x∂y = 0
43 dder2 false R R plusE x y = c 0.0 -- ∂2(x + y)/∂y2 = 0
44 dder2 true L _ timesE x y = c 2.0 -- ∂2(x · x)/∂x2 = 2
45 dder2 true R _ timesE x y = c 2.0 -- ∂2(y · y)/∂y2 = 2
46 dder2 false L L timesE x y = c 0.0 -- ∂2(x · y)/∂x2 = 0
47 dder2 false L R timesE x y = c 1.0 -- ∂2(x · y)/∂x∂y = 1
48 dder2 false R L timesE x y = c 1.0 -- ∂2(x · y)/∂x∂y = 1
49 dder2 false R R timesE x y = c 0.0 -- ∂2(x · y)/∂y2 = 0
50
51 -- 1 + x3 + (−y2)
52 term : X -> X -> [ Smooth X] X

53 term x y = p (c 1.0) (p (t (t x x) x) (n (t y y)))

Lines 22 to 31 record information about the first derivatives of our functions,
where we use the Arg data type to specify which argument of a binary function
we are taking a partial derivative with respect to. Next, lines 33 to 49 do the
same for second partial derivatives. The boolean argument to dder2 records if the
two arguments are definitionally equivalent, which is used to distinguish between
cases such as x ·x = x2 versus x · y. Note that we have no derivative functions for
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our nullary operation, it is constant and thus always has a derivative of 0. Finally,
line 52 define our example term, namely f(x, y) = 1+x3 +(−y2). We specifically
choose a simple term in order to aid with the explanation of our algorithms later
through Frank’s operational semantics. However, any arbitrary program with
the same type could be used for term. For example, we could have a loop using
mutable state (as we have in section 6.1) or we could define and call auxillary
functions (as we do in section 6.3, see Appendix A).

When handling our smooth effect, we will ultimately need a numeric result.
Thus, we define an evaluation handler that interprets our effectful operations as
their built-in floating point counterparts. Note that we have instantiated the
type variable in the Smooth effect with the Float type, allowing us to define evluate

in terms of Float operations.

Listing 4.3: Evaluation (Frank)
1 include prelude

2 include smooth

3
4 evaluate : <Smooth Float > X -> X

5 evaluate x = x

6 evaluate <ap0 ( constE i) -> k> = evaluate (k i)

7 evaluate <ap1 negateE x -> k> = evaluate (k (-. x))

8 evaluate <ap2 plusE x y -> k> = evaluate (k (x +. y))

9 evaluate <ap2 timesE x y -> k> = evaluate (k (x *. y))

The type of evaluate states that it handles exactly the effect Smooth Float, and per-
forms no effects to do so. The value case on line 5 does nothing to the final value.
Each of the matching cases on lines 6 to 9 takes the arguments of the effect and
calculates the corresponding float result, passes it to the continuation, and then
re-invokes the evaluate handler. Therefore, evaluate is implementable as a deep
handler as well.

The evaluate handler will always be our top-level handler, and it is the only
way to remove all Smooth interfaces. We shall evaluate an example program where
evaluate is the top-level handler to illustrate how Frank executes and thus how
effects and handlers behave. We will be paying special attention to how delim-
ited continuations are captured. We will use underlining to show what term is
currently at the focus of evaluation. Our initial program is below, and represents
the term 1 + x3 +−y2 evaluated at x = 2 and y = 4, which equals −7.
evaluate (p (c 1.0) (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

The current focus of evaluation is the command c 1.0.
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evaluate (p (c 1.0) (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

The argument 1.0 is in normal form (i.e. fully evaluated). Therefore, we can
handle the command c 1.0. The handling process begins by capturing the proper
delimited continuation by incrementally capturing the stack of evaluation frames.
We represent capturing by a wave underline.
evaluate (p

:::::::
(c 1.0) (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

evaluate
::::::::::::::::::::::::::::::::::::::::::::::::::::
(p (c 1.0) (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

We have now reached a handler, evaluate, for the command in focus. The command
and enclosing evaluation frames (wave underlined) are the captured delimited
continuation. The ap0 case of evaluate is then matched to the command c 1.0,
where k is bound to the continuation with c 1.0 removed and i is bound to 1.0.
The bound variables k and i are then substituted into the corresponding body of
the matching case of evaluate.
evaluate ({x -> (p x (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))} 1.0)

The next step applies the continuation to 1.0.
evaluate (p 1.0 (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

The focus of evaluation now moves to t 2.0 2.0, and a new delimited continuation
is dynamically captured.
evaluate (p 1.0 (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

evaluate (p 1.0 (p (t
::::::::::::
(t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

evaluate (p 1.0 (p
::::::::::::::::::::
(t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

evaluate (p 1.0
::::::::::::::::::::::::::::::::::::::::
(p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))) )

evaluate
::::::::::::::::::::::::::::::::::::::::::::::::
(p 1.0 (p (t (t 2.0 2.0) 2.0) (n (t 4.0 4.0))))

We have now again reached the evaluate handler, and this time match the ap2 case,
resulting in the following.
evaluate ({x -> (p 1.0 (p (t x 2.0) (n (t 4.0 4.0))))} (2.0 * 2.0))

evaluate ({x -> (p 1.0 (p (t x 2.0) (n (t 4.0 4.0))))} 4.0)

evaluate (p 1.0 (p (t 4.0 2.0) (n (t 4.0 4.0))))

Evaluation will continue as such until the final answer of −7 is calculated. We
have now seen how the evaluate handler interprets Smooth commands with the builtin
arithmetic operations. Even though evaluate is simple, it allows us to write our
other handlers in a polymorphic fashion independent of Float.

Finally, there is no appreciable difference between the Frank implementation
and any other.
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4.1 Forward Mode

The derivation of forward mode in section 2.2 shows that each smooth function
will now operate on a pair of values, namely the original value and its derivative.
Thus, we define a data type of paired numbers, and make it parameterized to
allow nesting of AD. The implementation of the forward mode handler is then
a straightforward transcription of the algorithm, which calls for replacing the
original operations with operations on paired numbers. Operator overloading
is a common method for implementing forward mode AD because it is a local
transformation, and thus well suited for overloading. Tail recursive deep handlers
are similar to dynamic operator overloading in the sense that when the operation
is used, the implementation is dynamically sought out, executed, and then control
immediately returns to the call site. This analogy can be seen concretely in the
example execution we performed for the evaluate handler. Thus, our forward mode
handler is also a tail recursive deep handler. We will also define a helper function
to differentiate a function of type The type
{( Paired X) -> [ Smooth X, Smooth ( Paired X)] ( Paired X)} -> X -> [ Smooth X] X

which shows that we remove one instance of the Smooth effect when differentiating.

Listing 4.4: Forward mode (Frank)
1 include prelude

2 include smooth

3
4 data Paired X = paired X X

5
6 v : Paired X -> X

7 v ( paired x _) = x

8
9 dv : Paired X -> X

10 dv ( paired _ dx) = dx

11
12 diff : <Smooth ( Paired X)> Y -> [ Smooth X] Y

13 diff x = x

14 diff <ap0 n -> k> =

15 -- v = n, dv = 0
16 let r = paired (ap0 n)

17 (c 0.0) in

18 diff (k r)

19 diff <ap1 u ( paired x dx) -> k> =

20 -- v = u(x), dv = ∂u(x) · dx

21 let r = paired (ap1 u x)

22 (t (der1 u x) dx) in

23 diff (k r)

24 diff <ap2 b ( paired x dx) ( paired y dy) -> k> =
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25 -- v = b(x, y), dv = ∂Lb(x, y) · dx + ∂Rb(x, y) · dy

26 let r = paired (ap2 b x y)

27 (p (t (der2 L b x y) dx)

28 (t (der2 R b x y) dy )) in

29 diff (k r)

30
31 -- d f x = ∂f(z)

∂z
(x)

32 d : {( Paired X) -> [ Smooth X, Smooth ( Paired X)] ( Paired X)}

33 -> X -> [ Smooth X] X

34 d f x = dv (diff (f ( paired x (<Smooth > (c 1.0)))))

Lines 4 to 10 define the type of paired numbers over some base type X and pro-
jections for the components. Lines 12 to 29 define the diff handler. The value
case on line 13 does no postprocessing. Each of the operation matching cases
implements the operations calculated in section 2.2. Note that we use the der

families of helper functions. Finally, each result is passed to the continuation k

with subsequent effects being handled by diff as well. The function d on lines 32
to 34 takes a function f to be differentiated at x and uses diff to do so. Note
the use of adaptor <Smooth>, which specifies that the effects of c 1.0 correspond to
Smooth X and not the innermost Smooth (Paired X). Of course, this function could be
evaluated outside the scope of the diff handler, rendering <Smooth> unnecessary. We
will prove diff and d correct in section 8.2.

Let us analyze the types of diff and d. The type <Smooth (Paired X)> Y -> [Smooth X] Y

of diff says that diff handles exactly the Smooth (Paired X) effect while requiring the
calling environment to provide at least the Smooth X effect. By being parametric on
X and using another Smooth effect while handling, the diff handler can be combined
compositionally with other handlers. For example, we can instantiate X with
Paired Y, allowing us to use d nested in itself as we do in section 4.5. The type
{( Paired X) -> [ Smooth X, Smooth ( Paired X)] ( Paired X)} -> X -> [ Smooth X] X

expresses that the function we are differentiating requires the Smooth (Paired X) and
Smooth X effects, and removes the Smooth (Paired X). It is also possible to give d the
type
{( Paired X) -> [ Smooth ( Paired X)] ( Paired X)} -> X -> [ Smooth X] X

but we will see that this type poses issues for compositionality. Finally, we expect
the user to always define functions of the form
X -> [ Smooth X] X

i.e. those which are parametric in X, similar to term, which can be passed to d.
We will evaluate an example program similar to our previous one. The pro-

gram will represent the same mathematical term 1 +x3 +−y2 evaluated at x = 2
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and y = 4, but additionally we shall be calculating the derivative with respect
to x at this point, which is 12. This is achieved by setting x to paired 2.0 1.0 and
y to paired 4.0 0.0, where x has its second component set to 1 to treat it as the
differentiated variable and y has its second component set to 0 to treat it as a
constant.

evaluate (diff (

p (c 1.0) (p (t (t ( paired 2.0 1.0) ( paired 2.0 1.0)) ( paired 2.0 1.0))

(n (t ( paired 4.0 0.0) ( paired 4.0 0.0))))

Evaluation begins as before, with the c 1.0 command being in focus and a
delimited continuation being captured.

evaluate (diff (

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
p (c 1.0) (p (t (t ( paired 2.0 1.0) ( paired 2.0 1.0)) ( paired 2.0 1.0))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(n (t ( paired 4.0 0.0) ( paired 4.0 0.0))))

Note how the continuation captured is delimited by diff and not evaluate. This
behavior is due to the effect typing system of Frank. There are two different
instances of the Smooth interface available to the portion of the program being han-
dled. By default, the innermost handler provides the instance for the operation
being handled. As we shall see later, Frank provides constructs allowing us to
select handlers other than the innermost one. The top case of diff is matched by
c 1.0 with the following result.

evaluate (

let r = paired (ap0 ( constE 1.0)) (c 0.0) in

diff (

{x -> (p x (p (t (t ( paired 2.0 1.0) ( paired 2.0 1.0)) ( paired 2.0 1.0))

(n (t ( paired 4.0 0.0) ( paired 4.0 0.0)))))} r)

evaluate (

let r = paired (c 1.0) (c 0.0) in

diff (

{x -> (p x (p (t (t ( paired 2.0 1.0) ( paired 2.0 1.0)) ( paired 2.0 1.0))

(n (t ( paired 4.0 0.0) ( paired 4.0 0.0)))))} r)

We now have two c commands which will be be handled by evaluate, producing
paired 1.0 0 for r’s value. After handling, r will be substituted and the continuation
applied.

evaluate (diff (

p ( paired 1.0 0.0) (p (t (t ( paired 2.0 1.0) ( paired 2.0 1.0)) ( paired 2.0 1.0))

(n (t ( paired 4.0 0.0) ( paired 4.0 0.0))))
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Evaluation will then continue in a similar manner for all remaining commands.
Each command will first be handled by diff, and the commands in the body of
each diff case handled by evaluate, eventually producing paired -7.0 12.0.

Lastly, the only appreciable difference between the Frank implementation and
any other is that in Eff and OCaml we must pass the correct effect instance value
as opposed being type system directed.

4.2 Stateful Reverse Mode

Recall our example straight-line program from section 2.2:

x = f(a) (1)

y = g(x, b) (2)

z = h(y, x) (3)

The reverse mode algorithm applied to this program can be viewed as being
applied recursively from the first line onwards, where the lines responsible for
derivative accumulation are prepended

x = f(a) (1a)

· · ·

δa += ∂f(a) · δx (1b)

↓

x = f(a) (1a)

y = g(x, b) (2a)

· · ·

δx += ∂Lg(x, b) · δy (2b)

δb += ∂Rg(x, b) · δy (2b)

δa += ∂f(a) · δx (1b)

x = f(a) (1a)

y = g(x, b) (2a)

z = h(y, x) (3a)

→ δy += ∂Lh(y, x) · δz (3b)

δx += ∂Rh(y, x) · δz (3b)

δx += ∂Lg(x, b) · δy (2b)

δb += ∂Rg(x, b) · δy (2b)

δa += ∂f(a) · δx (1b)

where the ellipsis represents the program yet to be consumed. Stateful reverse
mode, when implemented as a source-to-source program transformation, is very
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non-local as the dataflow is reversed. The powerful control flow of effect han-
dlers allows us dynamically create this reversal of dependencies. Stateful reverse
mode works by creating a mutable cell for each value of the original program,
and this cell accumulates contributions to the value’s derivative. The method
of accumulation is a generalized version of the backpropagation algorithm made
prominent by machine learning. We define the datatype Prop for backpropaga-
tion where Ref X is a reference to a mutable cell containing a value of type X. The
reverse handler handles the Smooth effect where the type variable X ist instantiated to
Prop. We believe the handler version of this approach was first produced by K. C.
Sivaramakrishnan, 2018, which itself was inspired by the approach of F. Wang,
Zheng, et al., 2019 based on delimited control operators. Our implementation is
essentially that of K. C. Sivaramakrishnan.

Listing 4.5: Stateful reverse mode (Frank)
1 include prelude

2 include smooth

3
4 data Prop X = prop X (Ref X) -- Value with mutable derivative

5
6 fwd : Prop X -> X

7 fwd (prop x _) = x

8
9 deriv : Prop X -> Ref X

10 deriv (prop _ r) = r

11
12 reverse : <Smooth (Prop X)> Unit -> [RefState , Smooth X] Unit

13 reverse x = x

14 reverse <ap0 n -> k> =

15 let r = prop (ap0 n) (new (c 0.0)) in -- r = n, δr = 0
16 reverse (k r) -- Rest of program

17 reverse <ap1 u (prop x dx) -> k> =

18 let r = prop (ap1 u x) (new (c 0.0)) in -- r = u(x), δr = 0
19 reverse (k r); -- Rest of program

20 dx := p @dx (t (der1 u x) @( deriv r)) -- δx += ∂u(x) · δr

21 reverse <ap2 b (prop x dx) (prop y dy) -> k> =

22 let r = prop (ap2 b x y) (new (c 0.0)) in -- r = b(x, y), δr = 0
23 reverse (k r); -- Rest of program

24 dx := p @dx (t (der2 L b x y) @( deriv r)); -- δx += ∂Lb(x, y) · δr

25 dy := p @dy (t (der2 R b x y) @( deriv r)) -- δy += ∂Rb(x, y) · δr

26
27 -- grad f x = ∂f(z)

∂z
(x)

28 grad : {( Prop X) -> [RefState , Smooth X, Smooth (Prop X)] (Prop X)}

29 -> X -> [RefState , Smooth X] X

30 grad f x =

31 let z = prop x (new (c 0.0)) in

32 -- Set the output derivative to 1 to get derivative of f

33 reverse ( deriv (f z) := <Smooth > (c 1.0));
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34 @( deriv z)

Lines 4 to 10 define the data type for values and mutable derivatives. Lines 12
to 25 define the reverse handler, which makes use of the der functions, but is
different from evaluate and diff from continuation reverse mode in two important
ways. Firstly, the type of reverse shows that it requires access to the RefState

interface of mutable state (a builtin effect of Frank that can be handled by the
language implementation). Secondly, the body of the ap1 and ap2 cases contains
code after the use of the captured delimited continuation k. We shall see these
writes will occur in reverse order compared to the original dataflow. Finally, we
define a helper function grad on lines 28 to 34. Importantly, on line 32 the output
of the function being differentiated has its derivative set to 1, which allows the
backpropagation to begin to accumulate.

To see how the handler works, we will evaluate the same term as before with
a small change.

evaluate (grad ({x ->

let y = c 4.0 in p (c 1.0) (p (t (t x x) x) (n (t y y)))

evaluate (

let z = prop 2.0 (new (c 0.0)) in

reverse (( deriv ({x ->

let y = c 4.0 in p (c 1.0) (p (t (t x x) x) (n (t y y)))

} z)) := (<Smooth > (c 1.0)));

@( deriv z)

The term new (c 0.0) is handled first by evaluate for c 0.0 (returning 0.0), and the
command new 0.0 is handled by the Frank implementation and returns a new
reference <z> whose cell contains 0.0. The result is then substituted for z.

evaluate (

reverse (( deriv ({x ->

let y = c 4.0 in p (c 1.0) (p (t (t x x) x) (n (t y y)))

} (prop 2.0 <z >))) := (<Smooth > (c 1.0)));

@( deriv (prop 2.0 <z >))

Next, the anonymous function is applied to prop 2.0 <z>.

evaluate (

reverse (( deriv (

let y = c 4.0 in

p (c 1.0) (p (t (t (prop 2.0 <z >) (prop 2.0 <z >)) (prop 2.0 <z >))

(n (t y y)))

)) := (<Smooth > (c 1.0)));

@( deriv (prop 2.0 <z >))
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The command c 4.0 is handled by the ap0 case of reverse, which as before creates a
new reference <r1>, and thus y is substituted by prop 4.0 <r1>. The command c 1.0

will create <r2>.

evaluate (

reverse (( deriv (

p (prop 1.0 <r2 >)

(p (t (t (prop 2.0 <z >) (prop 2.0 <z >)) (prop 2.0 <z >))

(n (t (prop 4.0 <r1 >) (prop 4.0 <r1 >))))

)) := (<Smooth > (c 1.0)));

@( deriv (prop 2.0 <z >))

We have now reached the first interesting effect, which matches the ap2 case of
reverse. The captured delimited continuation is now explicitly underlined with
waves.

evaluate (

reverse
:::::::::
(( deriv (

:::::::::::::::::::
p (prop 1.0 <r2 >)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(p (t (t (prop 2.0 <z >) (prop 2.0 <z >)) (prop 2.0 <z >))

::::::::::::::::::::::::::::::::::::::::::::::::
(n (t (prop 4.0 <r1 >) (prop 4.0 <r1 >))))

::::::::::::::::::::::::::
)) := (<Smooth > (c 1.0))) ;

The result of reverse handling the command produces a new reference <r3>.

evaluate (

reverse (( deriv (

p (prop 1.0 <r2 >)

(p (t (prop 4.0 <r3 >) (prop 2.0 <z >))

(n (t (prop 4.0 <r1 >) (prop 4.0 <r1 >))))

)) := (<Smooth > (c 1.0)));

<z> := (p @<z> (t ( der2L timesE 2.0 2.0) @( deriv (prop 4.0 <r3 >))));

<z> := (p @<z> (t ( der2R timesE 2.0 2.0) @( deriv (prop 4.0 <r3 >))));

@( deriv (prop 2.0 <z >))

We see that the evaluation of the initial program has produced new expressions
to be evaluated after the initial program finishes. The handling by reverse will
eventually handle all effects meant for it, producing the following.

Listing 4.6: Reverse pass
evaluate (

reverse (<r8 > := (<Smooth > (c 1.0)));

<r2 > := (p @<r2 > (t ( der2L plusE 1.0 -8.0) @( deriv (prop -7.0 <r8 >))));

<r7 > := (p @<r7 > (t ( der2R plusE 1.0 -8.0) @( deriv (prop -7.0 <r8 >))));

<r4 > := (p @<r4 > (t ( der2L plusE 8.0 -16.0) @( deriv (prop -8.0 <r7 >))));

<r6 > := (p @<r6 > (t ( der2R plusE 8.0 -16.0) @( deriv (prop -8.0 <r7 >))));

<r5 > := (p @<r5 > (t (der1 negateE 16.0) @( deriv (prop -16.0 <r6 >))));

<r1 > := (p @<r1 > (t ( der2L timesE 4.0 4.0) @( deriv (prop 16.0 <r5 >))));

<r1 > := (p @<r1 > (t ( der2R timesE 4.0 4.0) @( deriv (prop 16.0 <r5 >))));
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<r3 > := (p @<r3 > (t ( der2L timesE 4.0 2.0) @( deriv (prop 8.0 <r4 >))));

<z> := (p @<z> (t ( der2R timesE 4.0 2.0) @( deriv (prop 8.0 <r4 >))));

<z> := (p @<z> (t ( der2L timesE 2.0 2.0) @( deriv (prop 4.0 <r3 >))));

<z> := (p @<z> (t ( der2R timesE 2.0 2.0) @( deriv (prop 4.0 <r3 >))));

@( deriv (prop 2.0 <z >))

)

The above is essentially a secondary program created by reverse, which performs
backpropagation, also known as the reverse pass in contrast to the initial forward
pass. This program is exactly what would be produced by a source-to-source
stateful reverse mode transformation. Note that the definition of reverse could
be changed to return a suspended computation, and thus capture this secondary
program. In fact, this will be required for more advanced modes later. It could
also be possible to use multi-stage programming by reifying the initial and sec-
ondary programs as a computation graph in the style of [F. Wang, Zheng, et al.,
2019]. Their approach uses delimited continuations and combines normal execu-
tion with building an intermediate representation. As effects and handlers are
essentially a structured use of delimited continuations, a similar story for other
languages may be possible.

For differences between different languages, there is the previously seen type
versus value dispatch of effects. The one new difference is that in Frank, Eff,
and Koka we use global ML-style references, whereas in OCaml we use mutable
record fields. Of course, OCaml has ML-style references, but these are essentially
just one-member member mutable records.

4.3 Continuation Reverse Mode

Continuation based reverse mode is structurally very similar to forward mode,
but performs the mathematical operations of stateful reverse mode. The pair of
a value and its mutable derivative is replaced with a value and a continuation
backpropagator. This continuation is defined such that it computes gradients of
the value its paired with. We will show that this implementation is correct in
section 8.3.

Listing 4.7: Continuation reverse mode (Frank)
1 include prelude

2 include smooth

3
4 data Prop X [e] = prop X {X -> [e| Smooth X] X} -- Value with backpropagator
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5
6 v : Prop X -> X

7 v (prop x _) = x

8
9 dv : Prop X [e|] -> {X -> [e| Smooth X] X}

10 dv (prop _ dx) = dx

11
12 reverse : <Smooth (Prop X)> Y -> [ Smooth X] Y

13 reverse x = x

14 reverse <ap0 n -> k> =

15 let r = prop (ap0 n)

16 {z -> c 0.0} in

17 reverse (k r)

18 reverse <ap1 u (prop x dx) -> k> =

19 let r = prop (ap1 u x)

20 -- δx += ∂u(x) · δr

21 {z -> dx (t (der1 u x) z)} in

22 reverse (k r)

23 reverse <ap2 b (prop x dx) (prop y dy) -> k> =

24 let r = prop (ap2 b x y)

25 {z ->

26 -- δx += ∂Lb(x, y) · δr

27 p (dx (t (der2 L b x y) z))

28 -- δy += ∂Rb(x, y) · δr

29 (dy (t (der2 R b x y) z))

30 } in

31 reverse (k r)

32
33 -- grad f x = ∂f(z)

∂z
(x)

34 grad : {( Prop X) -> [RefState , Smooth X, Smooth (Prop X)] (Prop X)}

35 d : {( Prop X [e|]) -> [e| Smooth X, Smooth (Prop X [e|])] (Prop X [e|])}

36 -> X

37 -> [e| Smooth X] X

38 d f x = let bp = dv ( reverse (f (prop x {z -> z}))) in bp (c 1.0)

Lines 4 to 10 define our data type for values and continuations. In Frank, data
types that contain computations automatically have an effect variable passed
in. We have made this explicit by adding the [e] to the definition. Thus, the
continuation will be able to make use of more than just the Smooth X effect needed
for propagation. Lines 12 to 31 define the continuation reverse mode handler.
Finally, the helper function d is defined on Lines 34 to 38, wherein the function f

to be differentiated at x is run under the reverse handler producing a propagator,
which is then evaluated at 1.

Compared to forward mode, the reverse mode d has a type signature that
explicitly passes the effect variable e. The type signature without this explicit
variable would nevertheless be inferred by Frank. We include it for clarity.

Again, the only difference between the Frank implementation and any other is
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that in Eff and OCaml we must pass the correct effect instance value as opposed
being type system directed.

4.4 Taped Reverse Mode

Taped reverse mode AD is a common implementation strategy to remove the
complicated control flow of stateful reverse mode. The crux of the strategy follows
from the structure of the reverse pass created in stateful reverse mode. Listing 4.6
is an example of such a reverse pass. Note that each line has one of two structures
depending on whether it was generated by a unary or binary operation. For
example, the first two lines of the reverse pass of listing 4.6 are

<r2 > := (p @<r2 > (t ( der2L plusE 1.0 -8.0) @( deriv (prop -7.0
::::
<r8 > ))));

<r7 > := (p @<r7 > (t ( der2R plusE 1.0 -8.0) @( deriv (prop -7.0
::::
<r8 > ))));

which record the dependence of a addition operation (producing the derivative
stored at <r8>) on it’s two arguments (which have derivatives stored at <r2> and
<r7>). The corresponding lines in the reverse mode handler in listing 4.5 are

dx := p @dx (t (der2 L b x y) @( deriv r));

dy := p @dy (t (der2 R b x y) @( deriv r))

We can use the uniformity of the reverse pass to easily defunctionalize it into a
data structure called a tape.

The taped reverse mode handler is defined below.

Listing 4.8: Taped reverse mode (Frank)
1 include prelude

2 include smooth

3
4 data Name = name Int -- Name data type for fresh names

5
6 getValue : Name -> Int

7 getValue (name i) = i

8
9 interface Fresh = fresh : Name -- Generate fresh name

10
11 -- Handle fresh names by incrementing

12 incrementName : Int -> <Fresh > X -> Pair Int X

13 incrementName i x = pair i x

14 incrementName i <fresh -> k> = incrementName (i + 1) (k (name i))

15
16 data Prop X = prop X ( Maybe Name) -- Value with named derivative

17
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18 v : Prop X -> X

19 v (prop x _) = x

20
21 dv : Prop X -> Maybe Name

22 dv (prop _ dx) = dx

23
24 -- Defer an accumulation while recording dependency and value

25 data Pointer X = single Name X -- Single dependency , save derivative

26 | double Name Name X X -- Double dependency , save derivatives

27
28 reverse : List ( Pointer X)

29 -> <Smooth (Prop X)> Y

30 -> [ Smooth X, Fresh ] Pair (List ( Pointer X)) Y

31 reverse tape x = pair tape x -- Return updated tape with value

32 reverse tape <ap0 n -> k> =

33 let r = prop (ap0 n) nothing in -- Calculate value , no dependency

34 reverse tape (k r)

35 reverse tape <ap1 u (prop x dx) -> k> =

36 let res = ap1 u x in -- Calculate value

37 let tr = case dx

38 { nothing -> -- No dependency

39 pair tape (prop res nothing )

40 | (just nx) ->

41 -- Do δx += ∂u(x) · δr later

42 pair ( single nx (der1 u x) :: tape) (prop res (just fresh !))

43 } in

44 reverse (fst tr) (k (snd tr ))

45 reverse tape <ap2 b (prop x dx) (prop y dy) -> k> =

46 let res = ap2 b x y in -- Calculate value

47 let tr = case (pair dx dy)

48 { (pair nothing nothing ) -> -- No dependency

49 pair tape (prop res nothing )

50 | (pair (just nx) nothing ) ->

51 -- Do δx += ∂Lb(x, y) · δr later

52 pair ( single nx (der2 L b x y) :: tape) (prop res (just fresh !))

53 | (pair nothing (just ny )) ->

54 -- Do δy += ∂Rb(x, y) · δr later

55 pair ( single ny (der2 R b x y) :: tape) (prop res (just fresh !))

56 | (pair (just nx) (just ny )) ->

57 -- Do δy += ∂Rb(x, y) · δr and δy += ∂Rb(x, y) · δr later

58 pair ( double nx ny (der2 L b x y) (der2 R b x y) :: tape)

59 (prop res (just fresh !))

60 } in

61 reverse (fst tr) (k (snd tr ))

62
63 initState : Int -> [Abort , RefState , Smooth X] List (Ref X)

64 initState 0 = []

65 initState n = (new (c 0.0)) :: initState (n - 1)

66 initState _ = abort !

67
68 foreachIndexed : Int -> List X -> {Int -> X -> [e|] Unit} -> [e|] Unit

69 foreachIndexed _ [] _ = unit

70 foreachIndexed i (x :: xs) f = f i x; foreachIndexed (i + 1) xs f
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71
72 -- grad f x = ∂f(z)

∂z
(x)

73 d : {( Prop X)

74 -> [ Smooth X, Smooth (Prop X)] (Prop X)}

75 -> X

76 -> [Abort , RefState , Smooth X] X

77 d f x =

78 -- Get number of derivatives and deferred operations and result derivative

79 let res = <Abort , RefState > ( incrementName 0 ( -- Start fresh names at 0

80 let z = prop x (just fresh !)

81 in reverse [] (<Fresh > (f z))

82 )) in

83 let m = fst res in -- Number of names generated

84 let tape = fst (snd res) in -- Tape of deferred operations

85 let state = initState m in -- Initialize collection of mutable derivatives

86 -- If result has no derivative , don ’t initialize anything to 1, else if it

87 -- has one initialize it to 1 for backpropagation .

88 let start = case (dv (snd (snd res )))

89 { nothing -> pair 0 (c 0.0)

90 | (just n) -> pair ( getValue n) (c 1.0)

91 } in

92 (nth (fst start ) state ) := snd start ; -- Do the initialization

93 -- Iterate through the tape with index and perform deferred operations

94 foreachIndexed 0 tape

95 { k pointer -> -- Account for the effect of the k-th derivative

96 case pointer

97 { ( single nu vu) -> -- Do δu += vu · δk

98 let dk = @(nth (m - (k + 1)) state ) in -- Tape is in reverse

99 let du = @(nth ( getValue nu) state ) in

100 (nth ( getValue nu) state ) := (p du (t vu dk ))

101 | ( double nl nr vl vr) -> -- Do δl += vl · δk and δr += vr · δk

102 let dk = @(nth (m - (k + 1)) state ) in -- Tape is in reverse

103 let dl = @(nth ( getValue nl) state ) in

104 (nth ( getValue nl) state ) := (p dl (t vl dk ));

105 let dr = @(nth ( getValue nr) state ) in

106 (nth ( getValue nr) state ) := (p dr (t vr dk ))

107 }

108 };

109 @(nth 0 state ) -- Derivative of x, was the first ‘fresh ‘

Lines 4 to 14 define a replacement for global references, which we call Name. Due
to the linear and incremental nature of references produced during reverse mode,
names are merely integers that are incremented when a fresh one is required. The
incrementName handler produces names in this manner and returns the used counter
paired with the final result.

Lines 16 to 22 define the adapted Prop type. Instead of storing a reference,
we possibly store a name. The change from definitely storing a derivative to
optionally storing one is an optimization separate from the tape considerations.
When a constant operation is encountered, we do not need to allocate a derivative
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for it as its derivative is always 0. This lack of dependence is then propagated
transitively through the rest of the computation.

Lines 25 to 26 define the Pointer data type. Our tape will consist of a list of
Pointer values viewed as a stack, where single denotes the dependence of an opera-
tion on one argument and double similarly on two arguments. The Name components
are pointers to elements recorded earlier in the tape, i.e. indices, and thus taking
advantage of our definition of Name as a wrapped integer. The X components record
the values to be accumulated later into the derivatives. For example, the lines

<r2 > := (p @<r2 > (t ( der2L plusE 1.0 -8.0) @( deriv (prop -7.0 <r8 >))));

would be recorded as

double (name 2) (name 7) ( der2L plusE 1.0 -8.0) ( der2R plusE 1.0 -8.0)

and would be the 8th element of the tape.
Lines 28 to 61 define the taped reverse mode handler. The reverse handler has

a tape parameter that is updated during the handler execution which records the
reverse pass. The value case of the handler returns the final tape to be used in
the accumulation of derivatives. The constant case on line 33 does not change the
tape as its derivative is 0. When handling the other operations, we check to see
if the arguments transitively depend on only constants, and thus have a nothing in
the derivative component. If the derivative is not trivial, then we record this fact
onto the front of the tape and continue execution.

Lines 63 to 70 define utility functions for creating a list of 0 initialized refer-
ences and to iterate over a list while passing the current index.

Finally, lines 73 to 109 define the differentiation operator d which uses taped
reverse mode. Lines 79 to 82 run the computation and produce the tape and a
count of the number of names generated via the incrementName handler. We then
initialize all derivatives on lines 85 to 92, with 0’s for all intermediate values and 1
for the function’s output. Lines 94 to 108 then iterate over the tape, performing
the accumulation of derivatives based on the recorded dependencies. Finally,
line 109 returns the derivative of the input to the function.

Thus, we have moved the accumulation of derivatives outside the handler.
This change has some important implications. Foremost, the type of reverse in
taped reverse mode no longer contains RefState, only the type of d contains RefState.
While Frank does not take advantage of this change, Koka does. The derivative
operator d can be implemented with local state, meaning the type in Koka is
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forall <a,e >. (

f : (prop <a >) -> <div ,smooth <prop <a>>,smooth <a >|e> prop <a>,

x : a

) -> <div ,exn ,smooth <a >|e> a

which does not contain any state effect1. Another important implication is that
the reverse handler is now tail resumptive. In Koka, this can be taken advantage
of for a large increase in performance by changing our smooth effect to be linear,
i.e. the continuation captured during effect handling is used at most once. We
will come back to this in our performance benchmarks. Eff does not have such
a distinction between local and global mutable state. While vanilla OCaml does
not have this distinction either, there are proposals for adding stack allocated
values [Dolan and White, 2022]2.

The final difference between implementations stems from the relocation of
state. The Koka and OCaml languages have have support for mutable arrays,
which allow the accumulation of derivatives to be performed on contiguous mem-
ory while iterating over the tape.

4.5 Combined Modes

Each of the modes we have defined calculate the first derivative of the given func-
tion. Higher-order derivatives are also desired in practice, and are often achieved
by nesting AD algorithms when possible. The modularity and compositionality
of effects and handlers allows such nesting.

We will show how to calculate second derivatives using forward mode nested
with itself. A basic example is
basic : { Float }

basic ! = evaluate (d {y -> d {x -> t x (t x x)} y} (c 1.0))

which calculates d/dy(d/dx(x3)|x=y)|y=1 = d2/dy2(y3)|y=1 correctly as 6. A more
complex example is

d

dx

(
x · d

dy
(x+ y)

∣∣
y=1

)∣∣∣∣∣∣
x=1

which equals 1. Note that x appears in the inner derivative, in which it is treated
as a constant. Some systems do this incorrectly, resulting in the phenomenon

1div is the divergence effect, exn is the exception effect (the analogy to Abort)
2See https://github.com/ocaml-flambda/ocaml-jst/blob/e3076d2e7321a8e8ff18e5

60ed7a55d6ff0ebf04/jane/doc/local-intro.md for more information.

https://github.com/ocaml-flambda/ocaml-jst/blob/e3076d2e7321a8e8ff18e560ed7a55d6ff0ebf04/jane/doc/local-intro.md
https://github.com/ocaml-flambda/ocaml-jst/blob/e3076d2e7321a8e8ff18e560ed7a55d6ff0ebf04/jane/doc/local-intro.md
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known as perturbation confusion [Jeffrey Mark Siskind and Barak A Pearlmutter,
2005]. Such a system would incorrectly evaluate the example to 2.

The nesting will make use of Frank’s ability to dynamically determine which
handler handles a command and help us avoid the incorrect answer. Recall that
the type of d is
{( Paired X) -> [ Smooth X, Smooth ( Paired X)] ( Paired X)} -> X -> [ Smooth X] X

If we transcribe the example into Frank, we get:
evaluate (d {x -> t x (d {y -> p x y} (c 1.0))} 1.0)

Helpfully, this does not type check due to the type of x being Paired Float and the
type of y being Paired (Paired Float) in the sub-computation p x y. The difference in
types stems from using nested paired numbers, and is not a feature unique to
effects and handlers. Attempting to fix this type error, we next consider
evaluate (d {x -> t x (d {y -> p ( paired x (c 0.0)) y} (c 1.0))} 1.0)

which generates a new type error. The computation c 0.0 is typed as returning
Paired (Paired Float) whereas we require Paired Float as we are manually wrapping the
result in another Paired. The type of c is Float -> [Smooth X] X. Unifying the effect
[Smooth X] with the effect context of
[ Smooth Float , Smooth ( Paired Float ), Smooth ( Paired ( Paired Float ))]

provided by the inner d forces X to be unified with Paired (Paired Float) because
the rightmost Smooth is Smooth (Paired (Paired Float)). Thus, an incorrect result of
Paired (Paired Float) is produced. To fix this, we change our definition to
evaluate (d {x -> t x (d {y -> p ( paired x (<Smooth > (c 0.0))) y} (c 1.0))} 1.0)

The first argument of d has type {(Paired X) -> [Smooth X, Smooth (Paired X)] (Paired X)},
and the adaptor <Smooth> causes the command c 0.0 to be associated with Smooth X

instance of Smooth and not the rightmost instance Smooth (Paired X). Thus, one layer
of Paired is removed as required. Finally, if the d had the type
{( Paired X) -> [ Smooth ( Paired X)] ( Paired X)} -> X -> [ Smooth X] X

then the program would also be rejected as c 0.0 could not be associated with
Smooth X

With these observations, we define an auxiliary function.

Listing 4.9: Lifting (Frank)
lift : X -> [ Smooth X, Smooth ( Paired X)] ( Paired X)

lift x = paired x (<Smooth > (c 0.0))



4.5. Combined Modes 59

This allows our example to be written as

evaluate (d {x -> t x (d {y -> p (lift x) y} (c 1.0))} 1.0)

which computes the correct value. Attempting to use lift in other positions
evaluate (d {x -> t x (lift (d {y -> p x y} (c 1.0)))} (c 1.0))

evaluate (d {x -> t x (d {y -> p (lift (p x x)) y} (c 1.0))} (c 1.0))

correctly produces errors due again to the effect system. It is possible to achieve
the incorrect answer using lift

evaluate (d {x -> t x (lift (<Smooth > (d {y -> p x y} (c 1.0))))} (c 1.0))

which gives 2. However, it is obvious that the effects are being manipulated by
the use of <Smooth>. Thus, when we only use the lift operation, we mitigate a class
of AD errors. Koka’s effect type system is similar enough to also benefit, but Eff
and OCaml do not benefit as they have no effect system.

One important difference between Frank and Koka can be seen when trying
to calculate

d

dx

x · d
dy

(
y · d

dz

(
z · (y · x)

)∣∣∣
z=1

)∣∣∣∣∣∣
y=1


∣∣∣∣∣∣∣
x=1

which evaluates to 4. Transcribing the above to Frank produces
evaluate (

d {x -> t x (

d {y -> t y (

d {z -> t z (t y x)} (c 1.0)

)} (c 1.0)

)} (c 1.0)

)

which does not type check for the same reasons as before. However, we now
require the innermost x to skip over two handlers, meaning lift does not suffice
(and neither does any combination of lift with itself). The innermost effect
context is
[ Smooth Float ,

Smooth ( Paired Float ),

Smooth ( Paired ( Paired Float )),

Smooth ( Paired ( Paired ( Paired Float )))

]

Thus, we must define a new lift operation

Listing 4.10: Lifting multiple levels (Frank)
lift2 : X ->
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[ Smooth X,

Smooth ( Paired X),

Smooth ( Paired ( Paired X))

] ( Paired ( Paired X))

lift2 x = paired ( paired x (< Smooth (s a b c -> s a)> (c 0.0)))

(< Smooth (s a b c -> s b)> (c 0.0))

which when used unifies X with Paired Float. The adaptors <Smooth(s a b c -> s a)>

and <Smooth(s a b c -> s b)> can be understood as finite mappings. We take the
three rightmost instances of Smooth, and bind them to a, b, and c. The remaining
instances are bound as a row to s. We then create a new row as specified on
the right hand side of the adaptor. Thus, <Smooth(s a b c -> s a)> retains Smooth X and
<Smooth(s a b c -> s b)> retains Smooth (Paired X). We can then write the correct Frank
program
evaluate (

d {x -> t x (

d {y -> t y (

d {z -> t z (t (lift y) ( lift2 x))} (c 1.0)

)} (c 1.0)

)} (c 1.0)

)

which produces the correct answer. Koka does not have such adaptors built in.
However, Koka’s mask operation is the same as Franks basic adaptors of the form
<Smooth>, and this is sufficient to create any general adaptor. The construction
of a general adaptor from a mask operation is due to [Biernacki et al., 2017].
Nonetheless, their method requires creating intermediate thunks, and is thus
much less desirable compared to having general adaptors.

Another form of perturbation confusion occurs when differentiating higher-
order functions. [Manzyuk et al., 2012] define a family of generalized differentia-
tion operators D based on forward mode AD such that given

s : R→ (R→ R)→ R→ R

s u f x B f (x+ u)

and any f : R→ R and y ∈ R,

D s 0 f y = ∂

∂u
(s u f y)

∣∣
u=0 = ∂

∂u

(
f (x+ u)

)∣∣∣
u=0

= f ′(y) = D f y

and so by eta reduction we should have D s 0 = D. However, they examine
how naive implementations compute the wrong answer in some cases. Using our
forward mode d function, we can define an analogous operator
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s : X -> {X -> [ Smooth X] X} -> X -> [ Smooth X] X

s u f x = f (p u x)

ds : {( Paired X) -> [ Smooth X, Smooth ( Paired X)] ( Paired X)}

-> X -> [ Smooth X] X

ds f x = d {u -> s u f (lift x)} (c 0.0)

Testing ds on the function f(x) = x3, so that f ′′(x) = 6x,
test : { Float }

test! = evaluate (ds {x -> ds {y -> t y (t y y)} x} (c 5.0))

gives the correct result of 30. Thus, our implementation does not suffer from
their identified higher-order perturbation confusion [Manzyuk et al., 2012].





Chapter 5

Implementation of Advanced AD
Modes

Ginger

Our advanced modes of AD will cover higher-order derivatives, checkpointed
AD, and incorporating higher-order functions. Again, we will illustrate each algo-
rithm in Frank, and when there is an important difference in the other languages
we will highlight it. The remaining implementations can be found in Appendix A.

5.1 Higher-Order Derivatives

Higher-order derivatives can be calculated by nesting AD modes. However, this
can lead to redundant computation. For example, when using forward mode on
forward mode AD to calculate second derivatives of a unary function, the data
type used in Frank is Paired (Paired Float) which consists of four Float values. Two of
these values are the first derivatives, and thus are identical and redundant. The

63
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solution is to use triple a of numbers consisting of the original value, the first
derivative of the value, and the second derivative of the value. For a compre-
hensive explanation of this and other similar extensions, see [Betancourt, 2018].
Betancourt’s methods involve generalized Taylor series and how they are trans-
formed by smooth maps. These generalized Taylor series can then be truncated
to a finite prefix of powers (such as two for forward mode and three for second
derivative forward mode) while maintaining mathematical correctness.

The implementation is analogous to forward mode.

Listing 5.1: Second derivative forward mode (Frank)
1 include prelude

2 include smooth

3
4 data Triple X = triple X X X

5
6 v : Triple X -> X

7 v ( triple x _ _) = x

8
9 dv : Triple X -> X

10 dv ( triple _ dx _) = dx

11
12 ddv : Triple X -> X

13 ddv ( triple _ _ ddx) = ddx

14
15 diff : <Smooth ( Triple X)> Y -> [ Smooth X] Y

16 diff x = x

17 diff <ap0 n -> k> =

18 let r = triple (ap0 n)

19 (c 0.0)

20 (c 0.0) in

21 diff (k r)

22 diff <ap1 u ( triple x dx ddx) -> k> =

23 let r = triple (ap1 u x)

24 (t (der1 u x) dx)

25 (t ( dder1 u x) ddx) in

26 diff (k r)

27 diff <ap2 b ( triple x dx ddx) ( triple y dy ddy) -> k> =

28 let r = triple (ap2 b x y)

29 (p (t (der2 L b x y) dx)

30 (t (der2 R b x y) dy ))

31 (p (p (t ( dder2 false L R b x y) (t dx dy ))

32 (p (t (t (c 0.5) ( dder2 false L L b x y)) (t dx dx ))

33 (t (t (c 0.5) ( dder2 false R R b x y)) (t dy dy ))))

34 (p (t (der2 L b x y) ddx)

35 (t (der2 R b x y) ddy ))) in

36 diff (k r)

37
38 dd : {( Triple X) -> [ Smooth X, Smooth ( Triple X)] ( Triple X)}

39 -> X
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40 -> [ Smooth X] X

41 dd f x = t (c 2.0) (ddv (diff (

42 f ( triple x (<Smooth > (c 1.0)) (<Smooth > (c 0.0)))

43 )))

44
45 lift : X -> [ Smooth X, Smooth ( Triple X)] ( Triple X)

46 lift x = triple

47 x (< Smooth (s a b -> s a)> (c 0.0)) (< Smooth (s a b -> s a)> (c 0.0))

Lines 4 to 13 define the Triple data type which contains a value paired with its first
and second derivatives. Lines 15 to 36 define the diff handler which implements
the proper arithmetic based on truncated Taylor series. Lines 38 to 47 define the
dd function which performs the differentiation, and finally we include an analogous
lift function.

It is also possible to calculate higher-order derivatives in reverse mode di-
rectly in one reverse pass. As an example, we implement the algorithm of [M.
Wang, 2022] which calculates the entire Hessian of the given function. The im-
plementation can be found in listing A.22. The high-level structure is similar to
the standard stateful reverse mode, in that there is a forward pass followed by
a reverse pass to accumulate the requisite derivatives. However, computing the
Hessian requires much more information, especially in the formulation of M. Wang
which dynamically minimizes the saved values to only those required. Effects and
handlers help manage the state by associating it with the handler, and therefore
giving a more local view of the complex computation and data dependencies.

5.2 Checkpointing

Stateful reverse mode AD allocates a mutable cell for each operation, which
during the course of execution has the associated derivative accumulated into it.
Thus, the maximum memory residency is directly proportional to the number
of operations. Large computations may perform enough computations that it is
impractical to allocate all required state simultaneously. Checkpointed reverse
mode solves this problem by trading space for time via repeated computation of
the forward pass, once without allocating memory and an additional time with
memory. However, any memory allocated in between these two runs can be safely
deallocated, as it corresponds to code after the checkpointed subprogram in the
original program, thus reducing maximum memory residency.

We will focus specifically on user specified checkpointing, i.e. the user must
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choose what portion of the program should be recomputed in order to save mem-
ory. For an in-depth explanation, we recommend [Hascoët and Araya-Polo, 2006].
Checkpointing without user annotation is possible, see [Jeffrey Mark Siskind and
Barak A. Pearlmutter, 2017], and we leave it as future work.

Our implementation will begin with defining a new effect to mark out the
checkpointed computation. We then define two handlers, one which evaluates
the checkpointed program without creating a reverse pass, and one which does
while respecting the checkpoint annotations. Each of these handlers are unique
compared to our previously defined ones, as they will recursively call themselves
on the argument of the checkpoint effect, not just on the captured continuation.
Finally, note how succinct and clear the handling of the checkpoint effect is. We
can read off almost directly that the checkpointed code is run twice, once just for
evaluation and a second time for creating the reverse pass. Also note how we are
able to reuse the previously defined stateful reverse mode handler.

Listing 5.2: Checkpointed reverse mode (Frank)
1 include prelude

2 include smooth

3 include reverse

4
5 interface Checkpoint X [e] =

6 checkpoint : {[e| Checkpoint X [e|], Smooth (Prop X)] Prop X}

7 -> Prop X

8
9 evaluatet : Ref X

10 -> <Checkpoint X [e|], Smooth (Prop X)> Y

11 -> [e| Smooth X] Y

12 evaluatet _ x = x

13 evaluatet s <checkpoint p -> k> =

14 let res = evaluatet s (< Smooth (s a b -> s b)> p!) in

15 evaluatet s (k (prop (fwd res) s))

16 evaluatet s <ap0 n -> k> =

17 evaluatet s (k (prop (<Smooth > (ap0 n)) s))

18 evaluatet s <ap1 u (prop x dx) -> k> =

19 evaluatet s (k (prop (<Smooth > (ap1 u x)) s))

20 evaluatet s <ap2 b (prop x dx) (prop y dy) -> k> =

21 evaluatet s (k (prop (<Smooth > (ap2 b x y)) s))

22
23 reversec : <Checkpoint X [e|], Smooth (Prop X)> Unit

24 -> [e|RefState , Smooth X] Unit

25 reversec x = x

26 reversec <checkpoint p -> k> =

27 let s = new (c 0.0) in

28 let res = <RefState > ( evaluatet s (< Smooth (s a b -> s b)> p!)) in

29 let r = prop (fwd res) (new (c 0.0)) in

30 reversec (k r);
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31 reversec (( deriv (< Smooth (s a b -> s b), RefState > p!)) := @( deriv r))

32 reversec <m> = reversec (< Smooth (s a -> s)> ( reverse m!))

33
34 gradc : {( Prop X)

35 -> [RefState , Checkpoint X, Smooth X, Smooth (Prop X)] (Prop X)

36 }

37 -> X -> [RefState , Smooth X] X

38 gradc f x =

39 let z = prop x (new (c 0.0)) in

40 reversec (( deriv (f z)) := (<Smooth > (c 1.0)));

41 @( deriv z)

We begin on line 3 by importing our previous stateful reverse mode definition,
allowing us to use the stateful reverse mode handler reverse. Lines 5 to 7 define a
new effect Checkpoint used to annotate the checkpointed subprograms which will be
run multiple times. We add an explicit effect row variable e for clarity. Lines 9
to 21 define a simple evaluate-like handler, evaluatet, which only calculates a forward
pass, and recursively runs itself on checkpointed subprograms. Lines 23 to 32
define the checkpointed reverse mode handler. Frank also contains a catch-all
pattern match <m> which matches values and effects not handled above it. We use
this feature to extend reverse by delegating any Smooth commands received to reverse

and only adding a case for checkpoint. Note how the checkpointed subprogram (the
suspended computation p which is the argument of checkpoint) is called twice, once
with evaluatet as the handler and once with reversec as the handler. We require the
adaptor <Smooth(s a b -> s b)> on lines 14, 28 and 31 to ensure the effects of p are
handled by the correct handler. Thus, we are relying on the flexibility of effects
and handlers to interpret effects in different ways. Additionally, the last case will
match every Smooth command, and then reinvoke the captured computation with
a new reverse handler to handle the command. Finally, lines 34 to 41 define the
function which computes gradients using checkpointed reverse mode.

Let us begin to execute an example program in order to understand how the
reversec handler works. Consider the following program which makes use of nested
checkpoints.

evaluate ( gradc ({x ->

let y = c 2.0 in

let z = checkpoint {p x y} in

let a = checkpoint {let w = checkpoint {t x z} in p w y} in

p a x

The first interesting evaluation step is after the underlined checkpoint has been
handled.
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evaluate (

reversec (< Smooth (s a -> s)> ( reverse (( deriv (

let z = prop 4.0 <r2 > in

let a = checkpoint {

let w = checkpoint {t (prop 2.0 <z >) z} in

p w (prop 2.0 <r1 >)} in

p a (prop 2.0 <z >)

)) := (<Smooth > (c 1.0)))));

reversec (( deriv (< Smooth (s a b -> s b), RefState >

{p (prop 2.0 <z >) (prop 2.0 <r1 >)}!)

) := @( deriv (prop 4.0 <r2 >)));

@( deriv (prop 2.0 <z >))

Note how on the second line the reverse handler has been made the innermost
delimiter of the remainder of the initial program, via the catch-all case of reversec.
Additionally, note how the checkpointed code (underlined) is stored as a thunk
to be run after the initial program in the second use of reversec. After the initial
program has been evaluated away, we obtain the following.

evaluate (

reversec (< Smooth (s a -> s)> ( reverse (<r4 > := (<Smooth > (c 1.0)))));

<r3 > := (p @<r3 > (t ( der2L plusE 10.0 2.0) @( deriv (prop 12.0 <r4 >))));

<z> := (p @<z> (t ( der2R plusE 10.0 2.0) @( deriv (prop 12.0 <r4 >))));

reversec (( deriv (< Smooth (s a b -> s b), RefState >

{let w = checkpoint {t (prop 2.0 <z >) (prop 4.0 <r2 >)} in

p w (prop 2.0 <r1 >)}!)

) := @( deriv (prop 10.0 <r3 >)));

reversec (( deriv (< Smooth (s a b -> s b), RefState >

{p (prop 2.0 <z >) (prop 2.0 <r1 >)}!)

) := @( deriv (prop 4.0 <r2 >)));

@( deriv (prop 2.0 <z >))

The remaining checkpoint command illustrates the recursive nature of reversec. It
shows how even nested checkpointing in checkpointed code can be properly eval-
uated.

As observed before, Koka does not have generalized adaptors, but they can be
implemented in a less efficient manner. A further difference is that in Frank, one
handler can handle multiple effects simultaneously, whereas in Koka one handler
can handle exactly one effect. Thus, the structure of the checkpointed reverse
handler is slightly different. In Eff and OCaml handlers can handler multiple
effects, but for variety we write our checkpointed modes without reusing the
previous reverse mode.



5.3. Higher-Order Functions 69

5.3 Higher-Order Functions

Higher-order functions are an important feature of functional languages which en-
ables modularity, abstraction, and code reuse. So far, all of our algorithms work
in the presence of higher-order functions, but they do not interact with them.
Intuitively, if we take any fixed program which uses higher-order functions and
repeatedly inline or defunctionalize, we can create an equivalent first-order pro-
gram. The original program and the new program, when executed, will perform
the same sequence of effects, and so each handler will handle the same sequence
of effects regardless of the program. Therefore, we are ignoring an significant
feature of functional languages.

One basic example of the benefits of higher-order functions is the use of map.
Consider the following term:
map f (map g xs)

The two uses of map means that we must traverse the list xs twice. Many compil-
ers of functional languages can recognize this pattern and perform map fusion,
transforming the above into
map (f . g) xs

which only traverses the list once. Note that an effectful language, the two
programs may be observationally inequivalent. With a powerful enough effect
system or through the knowledge of the programmer, certain applications of the
above rule may still be possible. In conclusion, an AD system which is integrated
with higher-order functions can benefit from the modularity, abstraction, and
code reuse.

An obvious obstruction for an effect handler based implementation is that
function application is not an effect, and so we can not handle it. Therefore, the
following algorithms are illustrative of the expressiveness of effects and handlers,
even if manual manipulation of function abstraction and application is required.
Our implementations are based upon [Vákár and Smeding, 2022] which intro-
duces a define-then-run reverse mode in a pure functional language with support
for higher-order functions. Their approach essentially applies continuation-based
checkpointing transformation to every function. In contrast, our version is define-
by-run and makes use of mutable state. However, the primary idea is similar.

Consider the following code, which does not implement the core concept of
Vákár and Smeding (but was inspired by it). We shall use this implementation
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to contrast with the subsequent implementation which is based on their trans-
formation.

Listing 5.3: Higher-order reverse mode (Frank)
1 include prelude

2 include smooth

3 include evaluate

4
5 data Prop X = prop X (Ref X)

6
7 fwd : Prop X -> X

8 fwd (prop x _) = x

9
10 deriv : Prop X -> Ref X

11 deriv (prop _ r) = r

12
13 data Func X [e] =

14 func {Prop X -> [e|RefState , Smooth X] Pair (Prop X)

15 {[e|RefState , Smooth X] Unit}

16 }

17
18 interface High X [e] =

19 abs : {Prop X -> [e|High X [e|], RefState , Smooth (Prop X)] Prop X}

20 -> Func X [e|]

21 | app : Func X [e|] -> Prop X -> Prop X

22
23 reverseh : <Smooth (Prop X), High X [e|]> Y

24 -> [e|RefState , Smooth X] Pair Y {[e|RefState , Smooth X] Unit}

25 reverseh x = pair x {unit}

26 reverseh <ap0 n -> k> =

27 let r = prop (ap0 n) (new (c 0.0)) in

28 reverseh (k r)

29 reverseh <ap1 u (prop x dx) -> k> =

30 let r = prop (ap1 u x) (new (c 0.0)) in

31 let res = reverseh (k r) in

32 pair

33 (fst res)

34 { (snd res )!;

35 dx := (p @dx (t (der1 u x) @( deriv r)))

36 }

37 reverseh <ap2 b (prop x dx) (prop y dy) -> k> =

38 let r = prop (ap2 b x y) (new (c 0.0)) in

39 let res = reverseh (k r) in

40 pair

41 (fst res)

42 { (snd res )!;

43 dx := (p @dx (t (der2 L b x y) @( deriv r)));

44 dy := (p @dy (t (der2 R b x y) @( deriv r)))

45 }

46 reverseh <abs f -> k> =

47 let g = {x -> reverseh (< Smooth (s a b -> s b)> (f x))} in

48 reverseh (k (func g))
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49 reverseh <app (func f) x -> k> =

50 let r = f x in

51 let res = reverseh (k (fst r)) in

52 pair (fst res) {( snd res )!; (snd r)!}

53
54 gradh : {( Prop X)

55 -> [e|RefState , Smooth X, Smooth (Prop X), High X [e|]] (Prop X)

56 }

57 -> X -> [e|RefState , Smooth X] X

58 gradh f x =

59 let z = prop x (new (c 0.0)) in

60 let res = reverseh (( deriv (f z)) := (<Smooth > (c 1.0))) in

61 (snd res )!;

62 @( deriv z)

On lines 5 to 11 we define the Prop data type as before. Lines 13 to 21 define a
data type Func of instrumented functions and a new effect High for instrumenting
functions by way of explicit abstraction and application. Note that we require the
user to explicitly decide which functions the algorithm is to be made aware of by
using this effect. An instrumented function will produce the same result as the
original, but in addition it will provide the required portion of the reverse pass.
Lines 23 to 52 implement our handler, where the Smooth operations are handled
similarly to stateful reverse mode, except that we explicitly capture the reverse
pass as a thunk to be run later. Lines 46 to 52 handle the High operations. For abs,
we take the original function f and create a new function g which builds in the
reverse pass. Then when handling app, we take this reverse pass and ensure it is run
in the correct sequence with respect to the rest of the program. Finally, lines 54
to 62 define the differentiation function, which is similar to stateful reverse mode
except for the need to explicitly run the reverse pass on line 61. The algorithm we
have illustrated works, but is not too different from the original stateful reverse
mode. If our instrumented functions remained in their original condition, an
analogous execution would happen under stateful reverse mode.

The following uses the core idea of Vákár and Smeding, which is to checkpoint
each instrumented function, and produces a truly different execution than stateful
reverse mode.

Listing 5.4: Higher-order checkpointed reverse mode (Frank)
1 include prelude

2 include smooth

3 include evaluate

4
5 data Prop X = prop X (Ref X)

6
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7 fwd : Prop X -> X

8 fwd (prop x _) = x

9
10 deriv : Prop X -> Ref X

11 deriv (prop _ r) = r

12
13 data Func X [e] =

14 func {Prop X -> [e|RefState , Smooth X] Pair (Prop X)

15 {[e|RefState , Smooth X] Unit}

16 }

17
18 interface High X [e] =

19 abs : {Prop X -> [e|High X [e|], RefState , Smooth (Prop X)] Prop X}

20 -> Func X [e|]

21 | app : Func X [e|] -> Prop X -> Prop X

22
23 evaluatet : Ref X

24 -> <Smooth (Prop X), High X [e|]> Y

25 -> [e|RefState , Smooth X] Pair Y {[e|RefState , Smooth X] Unit}

26 evaluatet _ x = pair x {unit}

27 evaluatet s <abs f -> k> =

28 let g = {x -> evaluatet s (< Smooth (s a b -> s b)> (f x))} in

29 evaluatet s (k (func g))

30 evaluatet s <app (func f) x -> k> =

31 let res = f x in

32 evaluatet s (k (fst res ))

33 evaluatet s <ap0 n -> k> =

34 evaluatet s (k (prop (<Smooth > (ap0 n)) s))

35 evaluatet s <ap1 u (prop x dx) -> k> =

36 evaluatet s (k (prop (<Smooth > (ap1 u x)) s))

37 evaluatet s <ap2 b (prop x dx) (prop y dy) -> k> =

38 evaluatet s (k (prop (<Smooth > (ap2 b x y)) s))

39
40 reversehc : <Smooth (Prop X), High X [e|]> Y

41 -> [e|RefState , Smooth X] Pair Y {[e|RefState , Smooth X] Unit}

42 reversehc x = pair x {unit}

43 reversehc <ap0 n -> k> =

44 let r = prop (ap0 n) (new (c 0.0)) in

45 reversehc (k r)

46 reversehc <ap1 u (prop x dx) -> k> =

47 let r = prop (ap1 u x) (new (c 0.0)) in

48 let res = reversehc (k r) in

49 pair

50 (fst res)

51 { (snd res )!;

52 dx := (p @dx (t (der1 u x) @( deriv r)))

53 }

54 reversehc <ap2 b (prop x dx) (prop y dy) -> k> =

55 let r = prop (ap2 b x y) (new (c 0.0)) in

56 let res = reversehc (k r) in

57 pair

58 (fst res)

59 { (snd res )!;
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60 dx := (p @dx (t (der2 L b x y) @( deriv r)));

61 dy := (p @dy (t (der2 R b x y) @( deriv r)))

62 }

63 reversehc <abs f -> k> =

64 let g =

65 {x ->

66 let s = new (c 0.0) in

67 let res = evaluatet s (< Smooth (s a b -> s b)> (f x)) in

68 let r = prop (fwd (fst res )) (new (c 0.0)) in

69 pair

70 r

71 { let q = reversehc (

72 ( deriv (< Smooth (s a b -> s b)> (f x))) := @( deriv r)

73 ) in

74 (snd q)!

75 }

76 } in

77 reversehc (k (func g))

78 reversehc <app (func f) x -> k> =

79 let r = f x in

80 let res = reversehc (k (fst r)) in

81 pair (fst res) {( snd res )!; (snd r)!}

82
83 gradhc : { (Prop X)

84 -> [e|RefState , Smooth X, Smooth (Prop X), High X [e|]] (Prop X)

85 }

86 -> X -> [e|RefState , Smooth X] X

87 gradhc f x =

88 let z = prop x (new (c 0.0)) in

89 let res = reversehc (( deriv (f z)) := (<Smooth > (c 1.0))) in

90 (snd res )!;

91 @( deriv z)

Lines 5 to 21 are as before. Lines 23 to 38 define an evaluatet handler which is
analogous to the one of checkpointed reverse mode. Lines 40 to 81 define the
core handler reversehc, which is the same as above except for the handling of abs

on lines 63 to 77, where the function f is instrumented. Instead of recursively
using reversehc, we use a checkpointed approach where f is run twice, once with-
out producing the reverse pass and an additional time which does. Note that
when handling app, the process is the same. Finally, Lines 83 to 91 define the
differentiation function as before.

The differences between the Frank implementation and those of the other
languages are the same as for checkpointed reverse mode, except for Koka. We
could not devise an implementation which allowed the reuse of the smooth effect,
and thus defined a new effect which combined Smooth and High effects.





Chapter 6

Performance Analysis

Nutmeg

6.1 Asymptotic Analysis

An important aspect of AD is the asymptotic behavior. [Griewank and A.
Walther, 2008, Sec. 4.4] show that for a composite measure of “work”, both
forward and reverse mode only need perform bounded constant multiple more
work than the original program. Their measure of work accounts for four cat-
egories: memory fetches and stores, additions and subtractions, multiplications,
and non-linear operations. Paired with reasonable assumptions, they then prove
that forward mode applied to a program should be between 2 to 2.5 times slower
than the original program, and reverse mode should be between 3 to 4 times
slower. We will thus examine forward mode and the reverse modes for correct
performance.

We would like to show that our implementations differentiate with only a

75
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constant multiple slowdown, and that this holds across different problem sizes.
To do so, we create a simple program with an input n such that the number of
smooth operations invoked is directly proportional to n. Thus, graphing time t
against n should produce a line, and if another program takes time c · t, then
it is also a line when graphed against n. Furthermore, in this case the original
program has slope t/n and the derived program has slope (c · t)/n, and thus the
ratio of the slopes is c the slowdown factor. Our simple program will approximate
the Taylor series of 1

x
around 1, i.e. it will approximate the right-hand side of

1
x

=
∞∑

n=0
(−1)n(x− 1)n

which converges when |x−1| < 1. Let an denote the nth term of the above series.
Then we have the recurrence

a0 = 1, an = −(x− 1) · an−1

and so we can iteratively generate an as shown below in OCaml:
open Smooth

module Taylor_Recip_Benchmark (T : SMOOTH ) = struct

let approx_recip iters x = let open T in

let prev = ref (c 1.0) in (* a0 *)

let acc = ref (c 1.0) in (*
∑0

n=0 an *)

for _i = 1 to iters do

prev := !prev *. (~. (x -. (c 1.0))); (* a_i = −(x − 1) · a_i−1 *)

acc := !prev +. !acc (*
∑_i

n=0 an = a_i +
∑_i−1

n=0 an *)

done;

!acc (*
∑iters

n=0 an *)

end

Each iteration of the loop executes five smooth operations. Therefore, the number
of operations and thus the time to execute should be directly proportional to iters,
and thus each algorithm applied to apporx_recip should be directly proportional if
our implementations have the correct behavior. We then create an executable
which takes iters as a command line argument, e.g. in OCaml:
let _ =

(* Increase the minor heap size to 500 MiB to stop quadratic behaviour in

reverse mode due to deep callstack . 1MiB = 1048576. *)

Gc.set { (Gc.get ()) with Gc. minor_heap_size = (500 * 1048576)};

let iters = int_of_string Sys.argv .(1) in

let module E = Evaluate in

let module R = Reverse (E) in

let module T = Taylor_Recip_Benchmark (R) in

let res = match_with (R.grad (T. approx_recip iters )) 0.5 E. evaluate in

Printf . printf "%f\n" res
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The above example is straightforward except for the change in the garbage col-
lector (GC) minor heap size parameter. Stateful reverse mode creates a deep call
stack which is long-lived (the length of the entire program), causing stack scans
by the GC to add a linear overhead. By increasing the minor heap size, this issue
is alleviated. The needed minor heap size increases proportional to iters, and we
have chosen a suitable value for our tested range. It is also possible to change the
behavior of OCaml 5.0’s GC, but that is out of our scope here1. We also make
similar test programs for each of the other languages.

We will now describe our testing methodology. Due to the disparate perfor-
mance across modes and languages, our testing methodology for a single program
depends on the following four variables, which we explain in more detail shortly:

• w: the number of warmup runs;

• s: the starting value of our parameter n;

• e: the ending value of our parameter n; and

• d: the delta used to increment n.

For a specific program and a fixed value of each of these variables, we perform
the following for each n ∈ {s, s+ d, s+ 2d, . . . , e}:

1. With input n, we run the program w times as a warmup in an attempt to
reach a more steady state.

2. With input n, we run the program at least 10 times, keeping track of how
long each execution took.

3. For each input n, calculate the mean and standard deviation of the execu-
tions times.

Thus, at the end of each batch of runs we have for each n a mean time and
standard deviation. We automate the above process with the hyperfine program
[Peter, 2023], which performs exactly the described methodology. Note that we do
not test the effect of the number of warmup runs nor do we analyze the behavior
of the garbage collector in the relevant languages beyond the OCaml fix2.

We plot the data collected from the above process by showing the means
(connecting neighbors by a line) and adding symmetric error bars showing the

1Thanks to Stephen Dolan who diagnosed the issue and suggested the used solution.
2Frank is executed via an interpreter written in Haskell, Eff via one written in OCaml.
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standard deviation at each point. We label each graph with a four-tuple (w, s, e, d)
to record the parameters used to generate the data. Furthermore, we perform
linear and polynomial (specifically quadratic) regressions using least squares on
each result in order to classify each implementation. To provide quantitative
evidence for our classifications, we compute an R2 value to three significant figures
for each plot. When the quadratic regression R2 value is particularly high, we
contend that the result is quadratic. When the quadratic regression R2 value is
lower but much better than the linear regression R2 value, we characterize the
behavior as nonlinear, which in our case always means superlinear. For linear
algorithms, we also record the the ratio of runtimes compared to evaluation by
using the slope of the lines of best fit. We perform the above analyses using the
Python library scikit-learn [Pedregosa et al., 2011].

Unless otherwise stated, the following benchmarks were run on an HP Elite-
Book 840 G6 with a eight core (4.60 GHz boost) Intel i7-8565U, 2×16GB = 32GB
2400 MHz DDR4, and 512 GB M.2 PCIe 3.0x4 NVMe SSD. The operating system
is Ubuntu 23.10 with Linux kernel 5.15.146.1-microsoft-standard-WSL2 running
inside Windows Subsystem for Linux 2 on a Windows 11 host.

6.1.1 Frank

Figure 6.1 presents the asymptotics for our Frank implementations. Figures 6.1a
to 6.1e show the results for each of the standard modes, and fig. 6.1f compares
all modes using log-log axes.

Table 6.1 shows the R2 values for each mode. We see that evaluate and forward
mode are linear, and all reverse modes are nonlinear or quadratic. Additionally,
forward mode is 5.91 times slower than evaluation.

Mode Linear R2 Quadratic R2 Order Ratio
Evaluate 0.971 0.971 Linear 1.00
Forward 0.934 0.935 Linear 5.91
Continuation 0.838 0.962 Nonlinear -
Stateful 0.870 0.942 Nonlinear -
Taped 0.936 0.995 Quadratic -

Table 6.1: Frank, R2 values for linear and quadratic best fits
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(a) Evaluate
(10, 200, 4000, 200)

(b) Forward mode
(5, 200, 2000, 200)

(c) Continuation reverse mode
(5, 20, 200, 20)

(d) Stateful reverse mode
(5, 100, 1000, 100)

(e) Taped reverse mode
(5, 10, 140, 10)

(f) Log-log comparison
of all modes

Figure 6.1: Frank benchmark results
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6.1.2 Eff

Figure 6.2 presents the asymptotics for our Eff implementations. Figures 6.2a
to 6.2e show the results for each of the standard modes, and fig. 6.2f compares
all modes using log-log axes.

Table 6.2 shows the R2 values for each mode. We see that evaluate and forward
mode are linear, and all reverse modes are nonlinear or quadratic. Additionally,
forward mode is 4.83 times slower than evaluation.

Mode Linear R2 Quadratic R2 Order Ratio
Evaluate 0.997 0.997 Linear 1.00
Forward 0.996 0.997 Linear 4.83
Continuation 0.874 0.997 Quadratic -
Stateful 0.884 0.998 Quadratic -
Taped 0.851 0.970 Nonlinear -

Table 6.2: Eff, R2 values for linear and quadratic best fits

6.1.3 Koka

Koka has a special feature compared to our other languages. An effect can be de-
clared linear, which places a requirement on handlers to be tail resumptive. Thus,
we have implemented each algorithm twice, once without linear and once with,
except for stateful reverse mode which is not tail recursive. Figure 6.3 presents
the asymptotics for our Koka implementations without linear. Figures 6.3a to 6.3e
show the results for each of the standard modes, and fig. 6.3f compares all modes
using log-log axes. Figure 6.4 presents the asymptotics for our Koka implemen-
tations using linear. Figures 6.4a to 6.4d show the results for each of the standard
modes using linear effects, and fig. 6.4e compares all linear modes using log-log
axes.

Table 6.3 shows the R2 values for each mode. We see that of the non-linear

modes only evaluate is linear, which is due to a bug in Koka where nested handlers
of general (non-linear) effects can have nonlinear/quadratic behavior. For the
linear effect, we see that evaluate, forward, and taped reverse are linear while
continuation reverse is quadratic. Note also that linear evaluate is 20.8 times
faster than the non-linear version due to Koka’s efficient compilation scheme for
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(a) Evaluate
(10, 5000, 50000, 5000)

(b) Forward mode
(10, 1000, 10000, 1000)

(c) Continuation reverse mode
(10, 10, 100, 10)

(d) Stateful reverse mode
(10, 50, 500, 50)

(e) Taped reverse mode
(10, 20, 200, 20)

(f) Log-log comparison
of all modes

Figure 6.2: Eff benchmark results
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(a) Evaluate
(10, 30000, 300000, 30000)

(b) Forward mode
(10, 200, 2000, 200)

(c) Continuation reverse mode
(10, 30, 300, 30)

(d) Stateful reverse mode
(10, 100, 1000, 100)

(e) Taped reverse mode
(10, 1000, 6000, 1000)

(f) Log-log comparison
of all modes

Figure 6.3: Koka benchmark results
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(a) Evaluate, linear
(10, 30000, 300000, 30000)

(b) Forward mode, linear
(10, 300000, 3000000, 300000)

(c) Continuation reverse mode, linear
(10, 300, 3000, 300)

(d) Taped reverse mode, linear
(10, 10000, 100000, 10000)

(e) Log-log comparison of
all linear effect modes

Figure 6.4: Koka benchmark results, linear effects
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tail resumptive handlers. We see that linear forward mode is 7.95 times slower
than evaluate and that taped reverse mode is 93.4 times slower than evaluate.

Mode Linear R2 Quadratic R2 Order Ratio
Evaluate 0.972 0.975 Linear 20.8
Forward 0.910 0.960 Nonlinear -
Continuation 0.787 0.980 Quadratic -
Stateful 0.859 0.972 Nonlinear -
Taped 0.779 0.975 Nonlinear -
Linear
Evaluate 0.982 0.982 Linear 1.00
Forward 0.999 0.999 Linear 7.95
Continuation 0.951 0.999 Quadratic -
Taped 0.997 0.997 Linear 93.4

Table 6.3: Koka, R2 values for linear and quadratic best fits

6.1.4 OCaml

These benchmarks have been run on a Dell Precision T3600 with a quad core (3.60
GHz boost) Intel Xeon E5-1620, 4×8GB = 32GB 1600 MHz DDR4, and 256 GB
SATA 6 Gb/s SSD. The operating system used is headless Debian 12 (bookworm)
with Linux kernel release 6.1.0-18-amd64. Figure 6.5 presents the asymptotics
for our OCaml implementations. Figures 6.5a to 6.5e show the results for each
of the standard modes, and fig. 6.5f compares all modes using log-log axes.

Table 6.4 shows the R2 values for each mode. We see that evaluate, forward
mode, stateful reverse mode, and taped reverse mode are linear while continuation
reverse mode is quadratic. Additionally, forward mode is 4.76 times slower than
evaluation, stateful reverse mode is 8.54 times slower than evaluation, and taped
reverse mode is 8.26 times slower than evaluation.

6.2 Discussion of results

We have shown that each mode, except continuation reverse mode, has an imple-
mentation exhibiting the correct AD asymptotics, i.e. they are O(1) with respect
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(a) Evaluate
(10, 30000, 600000, 30000)

(b) Forward mode
(10, 30000, 600000, 30000)

(c) Continuation reverse mode
(10, 500, 7000, 500)

(d) Stateful reverse mode
(10, 30000, 600000, 30000)

(e) Taped reverse mode
(10, 30000, 600000, 30000)

(f) Log-log comparison
of all modes

Figure 6.5: OCaml benchmark results
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Mode Linear R2 Quadratic R2 Order Ratio
Evaluate 0.993 0.993 Linear 1.00
Forward 0.999 0.999 Linear 4.76
Continuation 0.952 1.000 Quadratic -
Stateful 1.000 1.000 Linear 8.54
Taped 1.000 1.000 Linear 8.26

Table 6.4: OCaml, R2 values for linear and quadratic best fits

to evaluation. Our best results are from OCaml, where forward mode is approxi-
mately 4.8× slower than evaluation, stateful reverse mode is approximately 8.6×
slower, and taped reverse mode is approximately 8.3 times slower. We have not
reached the theoretical optimal bounds derived by [Griewank and A. Walther,
2008] of 2.5× and 4×, but we are not far off. Therefore, we claim that our AD
modes in OCaml are performant enough to be practical, supporting the general
claim that effect handlers are suitable for AD.

Furthermore, we have seen in the case of Koka that linear effects and handlers
are much faster than non-linear ones. This decrease in execution time is due
to Koka’s changes to its compilation strategy based on the guarantee that all
handlers resume exactly once and that no data needs to be captured in order to
be used after the resumption concludes. We also note for completeness that, due
to a bug in Koka, the linear taped mode executable was compiled in debug mode.

We believe that the correct asymptotics are possible for reverse mode in Koka
as well. Consider the following version of stateful reverse mode in Koka.
val reverse = handler {

ctl ap0(n) -> {

val r = evaluate {Prop(op0(n), ref(c (0.0)))}

resume (r)

}

ctl ap1(u,x) -> {

val r = evaluate {Prop(op1(u,x.v), ref(c (0.0)))}

resume (r)

evaluate {set(x.dv , !x.dv +. (der1(u,x.v) *. !r.dv ))}

}

ctl ap2(b,x,y) -> {

val r = evaluate {Prop(op2(b,x.v,y.v), ref(c (0.0)))}

resume (r)

evaluate {set(x.dv , !x.dv +. (der2(b,L,x.v,y.v) *. !r.dv ))}

evaluate {set(y.dv , !y.dv +. (der2(b,R,x.v,y.v) *. !r.dv ))}

}

}
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We have taken each effectful line in the reverse handler and handled them directly
with the evaluate handler as opposed to using the handler at the call-site of the
gradient operator. Running our benchmark with this version of reverse produces
the following correct behavior.

Thus, the reversal of dependencies by virtue of using captured data after resuming
in a handler is not the source of the slowdown.

Unfortunately, at present there is a bug in Koka which causes programs con-
taining nested handlers for general effects to perform incorrectly. For example,
consider the following program.
effect ctl op () : int

fun work( iters )

var acc := 0

repeat ( iters ) {acc := (acc + op ())}

acc

fun main ()

val iters = try {get -args (). head. unjust .parse -int. unjust } fn(_) {100}

with ctl op () resume (1)

with ctl op () resume (op () + 1)

println (work( iters ))

The result of running the above exhibits quadratic behavior with respect to the
number of iterations, when it should be linear. Indeed, running analogous code
in other languages, for example Frank, produces the correct linear behavior.

6.3 Real World Benchmarks

We claim that our implementation of AD via effects and handlers is performant
with respect to comparable implementations. By comparable, we mean CPU
based, as we do not use GPU based computation, and dynamic/define-by-run, as
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static/define-then-run approaches are almost always faster through code genera-
tion and optimization. The dynamic approach is often referred to as eager mode,
for example by PyTorch and TensorFlow. To substantiate our claim, we will use
the benchmark suite of [Šrajer, Kukelova, and Fitzgibbon, 2018a]3.

The suite of Šrajer, Kukelova, and Fitzgibbon is reproducible, extensible, re-
alistic, and expansive. It is reproducible through the use of containerization,
ensuring that the same version of each tool is used across runs and compilations.
Extensibility is achieved through a documented test harness and modular design.
The four computations which they benchmark are real world functions which are
optimized against in machine learning and computer vision. Additionally, the cur-
rent iteration of their system supports thirteen different implementations across
five languages, including a baseline of finite differences4 and manually imple-
mented derivatives. Finally, the computed derivatives are checked for correctness
against a known correct implementation.

The full methodology can be found in their paper and the repository5, we
will highlight the important aspects here. For each implementation and set of
parameters, essentially the following is carried out:

• Read the input data and convert it into a consumable format.

• Run any needed preparation code which is not AD.

• For both computation of the objective function and its gradient:

– Find the number of times r needed to run to reach a prescribed minium
time.

– Run n lots of r computations, find the average time for each lot.

– Pick the minium average time of from the n lots to alleviate noise.

• Save the times recorded and the numerical results to check correctness.

We have chosen one of their four computations to implement, namely the objec-
tive function used for the fitting of Gaussian mixture models. Specifically, let
m,N,K,D ∈ N and let 1 ≤ i ≤ N and 1 ≤ k ≤ K. We use || · || for Euclidean

3A longer preprint is available [Šrajer, Kukelova, and Fitzgibbon, 2018b] and the base suite
is available at https://github.com/microsoft/ADBench.

4Finite differences approximate the derivative via, for example, ∂f(x)/∂x(y) ∼= f(y + ε) − f(y)/ε,
which holds for small ε.

5https://github.com/microsoft/ADBench/blob/master/docs/Methodology.md

https://github.com/microsoft/ADBench
https://github.com/microsoft/ADBench/blob/master/docs/Methodology.md
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norm, and use an unspecified function Q : RD × RD(D − 1)/2 → RD×D which cre-
ates a D × D lower triangular matrix. Then for vectors xi ∈ RD, qk ∈ RD,
lk ∈ RD(D − 1)/2, µk ∈ RD, and α ∈ RK , we define

L(α,M,Q,L) B
N∑

i=1
logsumexp

[αk + sum(qk)− 1
2 ||Q(qk, lk)(xi − µk)||2

]K

k=1


−N logsumexp

(
[αk]Kk=1

)
(6.1)

+ 1
2

K∑
k=1

(
|| exp (qk)||2 + ||lk||2

)
−m sum(qk)

where we have matrices M B [µk]Kk=1, Q B [qk]Kk=1, and L B [lk]Kk=1. The
derivation of this objective function and the definition of Q can be found in
[Šrajer, Kukelova, and Fitzgibbon, 2018a]. The variables α, M, Q, and L are
the independent variables which we must find the derivatives of, where the xi’s
have a fixed value. The dimensions of the independent variables will change
depending on N , K, and D and the total number of independent variables will
be the increasing parameter which we measure time against.

We implement the above function using the Owl scientific computing library
[L. Wang, Zhao, and Mortier, 2022]6. Doing so gives us access to primitive op-
erations such as summation and transposition on tensors (n-dimensional arrays).
Thus, our family of smooth functions can now include tensor-valued operations.
Owl itself can perform AD, but we do not use this feature. The new version of
Smooth can be found in Appendix A. Consequently, the number of effectful opera-
tions greatly decreases, e.g. 999 uses of binary addition for a 1000 element vector
versus 1 summation operation, which reduces the overhead of effect handling.
Besides the change to operations involving tensors, the structure of reverse mode
is the same, which can be seen in Appendix A. Finally, the actual implementation
of the function L can also be found in Appendix A.

These benchmarks have been run on a Dell Precision T3600 with a quad core
(3.60 GHz boost) Intel Xeon E5-1620, 4 × 8GB = 32GB 1600 MHz DDR4, and
256 GB SATA 6 Gb/s SSD. The operating system used is headless Debian 12
(bookworm) with Linux kernel release 6.1.0-18-amd64. The results of our imple-
mentation along with the other systems is summarized in fig. 6.6 and fig. 6.7,
where the x-axis is the number of independent variables and the y-axis is the
amount of time to compute the Jacobian, with each axis logarithmic scale. The

6https://ocaml.xyz/

https://ocaml.xyz/
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Figure
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Figure
6.7:
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results,N
=
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input data for fig. 6.6 always hasN = 1, 000, while fig. 6.7 always hasN = 10, 000,
and we note that this does not effect the number of independent variables. In both
figures, our implementation is more performant in the long run than: finite dif-
ferences (C++), Autograd (Python), Zygote (Julia), and pure Julia (Julia). For
N = 1, 000 we are competitive with eager TensorFlow 2.0 (Python), although
we are not for N = 10, 000. Finally, we are competitive with DiffSharp (F#) in
both instances. Of the previous systems, the only define-by-run system we do
not out perform is eager Tensorflow. Furthermore, the remaining seven imple-
mentations which outperform us are either handcrafted, source transformations,
or define-then-run systems. Therefore, we substantiate our claim that we are a
competitive define-by-run system.
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Chapter 7

Mathematical Tools

Rose

We have presented AD algorithms implemented with effects and handlers,
and have given example programs to illustrate correctness. However, it is clearly
preferable to be able to prove correctness. This chapter will recall and develop
the necessary tools to do so. Section 7.1 presents the semantic basis for effects
and handlers, which are expressed using initial algebras and free monads. Sec-
tion 7.2 provides a model effect handler language in which to reason about our
programs, both operationally and denotationally. Finally, section 7.3 sets out
our main proof technique of logical relations for our model language, suitably
generalized to account for differentiation, which will allow correctness proofs via
the denotational semantics.

We assume that the reader is familiar with basic category theory concepts
such as functors, natural transformations, adjunctions, monads, and limits. We
also assume the reader is familiar with strong functors and monads. Finally, we
assume the reader is acquainted with bi-cartesian closed categories (bi-CCCs),

95



96 Chapter 7. Mathematical Tools

meaning a cartesian closed category with finite coproducts. Let us fix some
notation for bi-CCCs. For a bi-CCC C, we write 1 for the terminal object, 0 for
the initial object, × and ∏ for binary and finite products, + and ∐ for binary and
finite coproducts, and ⇒ for exponentials. We write ! for terminal maps, ? for
initial maps, πi for projections, ⟨−,−⟩ for tupling, ιi for coprojections, [−,−] for
cotupling, and eval for evaluation. We often leave the currying and uncurrying
operations implicit, but mention when they are used.

7.1 Initial Algebras and Free Monads

Given a functor F : C → C, an F -algebra is a pair ⟨A,α : FA → A⟩. One can
view F as specifying some data, and thus an F -algebra is an object A along
with a structure map showing how this data interacts with A. When the object
component of an algebra is clear, we may sometimes leave it implicit. A map of F -
algebras f : ⟨A,α⟩ → ⟨B, β⟩ is a map f : A→ B such that f · α = β · Ff . Thus,
such a map preserves how the data interacts with each algebra. The category
Alg F has F -algebras as objects and maps of F -algebras as morphisms. The
category Alg F can be used to characterize induction and recursion for structures
based on the data that F specifies. An important example of this characterization
is the existence of an initial F -algebra.

Definition 7.1.1 (Awodey, 2010, pg. 268). An algebra for F is initial if it admits
a unique homomorphism into every F -algebra, i.e. it is the initial object of Alg F .

The initial F -algebra does not necessarily exist. When it does, the object
component is often denoted by µX.FX or µF . An important property of initial
algebras is that they are fixed points, i.e. µF ≃ F (µF ).

Lemma 7.1.2 (Lambek’s lemma [Lambek, 1968]). Suppose F : C → C has an
initial algebra ι : F (µF )→ µF . Then ι is an isomorphism.

Let us look at a familiar example of a structure supporting induction and
recursion, namely the natural numbers, through the lens of initial algebras.

Example 7.1.3. Define the functor FX B X + 1 on Set where 1 B {⋆} is a
singleton set. An F -algebra is a pair ⟨A,α : A+1→ A⟩. The map α is equivalent
to a pair of maps z : 1→ A and s : A→ A. The natural numbers N are the initial
F -algebra, with the algebra structure N + 1 → N given by [succ, 0] where succ
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is the successor function. Given another F -algebra ⟨A, [s, z] : A + 1 → A⟩, the
unique map f : N→ A is given by recursion so that f(0) = z(⋆) and f(succ(n)) =
s(f(n)). The fact that this f is unique is equivalent to induction on the natural
numbers.

Another important class of F -algebras are the free F -algebras. Given any
object A ∈ C, we would like to characterize what it means for A to have a
“minimal” F -algebra structure.

Definition 7.1.4 (Adámek, Milius, and Moss, 2021, Remark 2.2.19). A free F -
algebra on an object A in C is an algebra φA : FA♯ → A♯ together with a universal
arrow ηA : A→ A♯. Universality here means that for every β : FB → B and every
morphism f : A → B in C, there exists a unique homomorphism f̄ : A♯ → B

extending f , i.e. a unique morphism of C for which the diagram below commutes:

FA♯ A♯ A

FB B
β

F f̄ f̄
f

ηAφA

In the case where C has binary coproducts, we can reduce the above diagram to
a commutative square as follows:

FA♯ + A A♯

FB + A B
[β,f ]

F f̄+idA f̄

[φA,ηA]

Note that for an endofunctor F and a fixed object A, we get a new functor
F (−)+A defined in the obvious way, and the above square shows f̄ is an algebra
homomorphism.

Let us look at a familiar example of free algebras.

Example 7.1.5. Define the functor FX B X × X on Set. An F -algebra
⟨A,α : A × A → A⟩ is a set A and a binary operation. For a set T , the free
F -algebra T ♯ on T is the set of finite binary trees with leaves labelled by ele-
ments of T . Thus, T ♯ is the set inductively defined by leaf(t) ∈ T ♯ for each t ∈ T
and branch(t1, t2) ∈ T ♯ for each t1, t2 ∈ T ♯. Given ⟨A,α⟩ and a map f : T → A,
there is a unique map f : T ♯ → A defined by recursion such that f(leaf(t)) = f(t)
and f(branch(t1, t2)) = α(f(t1), f(t2)).
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Initial algebras and free algebras are closely related.

Proposition 7.1.6 (Adámek, Milius, and Moss, 2021, Proposition 2.2.20). Let C
be a category with finite coproducts. For every endofunctor F , the free F -algebra
on A is precisely the initial algebra for F (−) + A. That is, if A♯ is free, then
µX.(FX + A) = A♯ with the algebra structure [φA, ηA], and vice versa.

Thus, free algebras for such a C have a notion of induction and recursion sim-
ilar to that of initial algebras. However, even when C does not have coproducts,
there are other interesting properties of free algebras, particularly when all free
algebras exist.

Definition 7.1.7 (Adámek, Milius, and Moss, 2021, Definition 2.2.22). A functor
F is a varietor if every object generates a free algebra for F .

It is natural to ask if the construction of free algebras for a varietor F is
functorial. This is indeed the case, and in fact the construction forms a monad.

Proposition 7.1.8 (Adámek, Milius, and Moss, 2021, Remark 2.2.23). A functor
F is a varietor if and only if the forgetful functor from U : Alg F → C has a left
adjoint A 7→ A♯. This defines a monad M = (M, η, µ) on C by MA = A♯.

Sketch: For a morphism f : A → B, we have a unique homomorphism of F -
algebras Mf : A♯ → B♯ with Mf · ηA = ηB · f . The unit η : Id → M

has components the universal arrows ηA : A → A♯, and the monad multiplica-
tion µ : MM → M has as its components the unique F -algebra homomorphism
µA : (A♯)♯ → A♯ with µA · ηA♯ = idA♯ .

The monadM of free F -algebras naturally has a category of algebras AlgM.
Recall U : Alg F → C is monadic if it has a left adjoint and Alg M ≃ Alg F .

Theorem 7.1.9 (Barr and Wells, 2005, Ch. 9, Proposition 4.1). If U has a left
adjoint, then it is monadic.

Thus we have three equivalent conditions, U : Alg F → C has a left adjoint
if and only if Alg M ≃ Alg F if and only if F is a varietor. There is another,
weaker, notion of free monad.

Definition 7.1.10 (Barr, 1970, sec. 5). Let F : C → C be a functor. We say
that M = (M, η, µ) is the free monad generated by F if there exists a natural
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transformation τ : F → M such that for any other monad M′ = (M ′, η′, µ′)
equipped with a natural transformation τ ′ : F →M ′, there exists a unique monad
morphism θ such that τ ′ = θ · τ .

[Barr, 1970] showed that the monad M induced by the free-forgetful ad-
junction for Alg F is free in the above sense, where the natural transformation
F →M is given by φA · FηA where φA : FMA→MA is the free F -algebra map
[Barr, 1970]. The converse is not true, a free monad via a natural transformation
F → M does not imply that the forgetful functor U : Alg F → C has a left
adjoint. Nonetheless, there is a partial converse.

Theorem 7.1.11 (Adámek, Milius, and Moss, 2021, Theorem 2.2.24, Barr, 1970,
Corollary 5.10, Kelly, 1980, Proposition 22.4). Given a locally small, complete
category, an endofunctor F generates a free monad if and only if it is a varietor.

Our denotational semantics will require the free algebra monad for an endo-
functor F , and so when we say free monad, we mean the free algebra monad.

A useful method of constructing initial algebras exists in categories with col-
imits of chains, whereby we can apply proposition 7.1.6 to produce free algebras.
The construction mirrors that of inductively defined sets. We begin with defining
a ordinal indexed collection of objects.

Definition 7.1.12 (Adámek, Milius, and Moss, 2021, Definition 6.1.4). Let C be
a category with colimits of chains. For an endofunctor F we define the initial-
algebra chain W : Ord → C. Its objects are denoted by Wi and its connecting
morphisms by wi,j : Wi → Wj, i ≤ j ∈ Ord. They are defined by transfinite
recursion:

W0 B 0,

Wj+1 B FWj for all ordinals j,

Wj B colim
i<j

Wi for all limit ordinals j, and

w0,1 B?F 0,

wj+1,k+1 = Fwj,k,

wi,j B colimit cocone for limit ordinals j for all i < j.
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Note 7.1.13 (Adámek, Milius, and Moss, 2021, Remark 6.1.5). A portion of the
initial-algebra chain is shown below:

0 F0 F 20 F 30 · · ·

colim
i<ω

F n0 FWω · · ·

? F ? F 2? F 3?

w0,ω

w1,ω w2,ω w3,ω

w0,ω+1 w1,ω+1

w2,ω+1

w3,ω+1

wω,ω+1 wω+1,ω+2

The above definition does not mention wω,ω+1 because wω,ω+1 : Wω → FWω is
uniquely determined by universality of the colimit colimi<ω F

n0, and likewise for
other limit ordinals.

To see why, leave out 0 in the ω-chain prefix. We get the same colimit, i.e.
colimi+1<ω Wi+1 is isomorphic to Wω, with cocone given by wi+1,ω : Wi+1 → Wω

for i + 1 < ω. We also see that the morphisms wi+1,ω+1 B Fwi,ω form a cocone.
Hence, we obtain wω,ω+1 uniquely such that wω,ω+1 ·wi+1,ω = Fwi,ω. Furthermore,
proceeding in a similar fashion, we obtain wi,j for all pairs of ordinals i ≤ j.

The initial-algebra chain may or may not contain the initial algebra for F .
For example, the powerset functor P : Set→ Set does not have any fixed-points,
and thus cannot have an initial algebra. When one of the connecting morphisms
is an isomorphism, the chain does produce the initial algebra, and we say the
chain converges.

Definition 7.1.14 (Adámek, Milius, and Moss, 2021, Definition 6.1.10). We say
that the initial-algebra chain of a functor F converges in λ steps if wλ,λ+1 is an
isomorphism. We say that the chain converges in exactly λ steps if λ is the least
such ordinal.

The previous definition only considers connecting morphisms from the succes-
sor case, but this is in fact sufficient.

Proposition 7.1.15 (Adámek, Milius, and Moss, 2021, Proposition 6.1.11). If
i < j and wi,j is an isomorphism, then so is wi,i+1.

We now record the theorem for which the initial-algebra chain was defined,
along with a useful corollary.
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Theorem 7.1.16 (Adámek, Milius, and Moss, 2021, Theorem 6.1.12). Let C be
a category with colimits of chains. If the initial-algebra chain of an endofunctor
F converges in j steps, then Wj is the initial algebra with the algebra structure

w−1
j,j+1 : FWj → Wj.

Corollary 7.1.17 (Adámek, Milius, and Moss, 2021, Corollary 6.1.13). Let C be
a category with colimits of chains. Let F : C → C preserve colimits of λ-chains
for some ordinal λ. Then the initial-algebra chain of F converges in λ steps.
Therefore, µF = Wλ.

Note that when when a endofunctor F preserves colimits of λ-chains, then so
does A+ F (−) for any A ∈ C. Thus, we derive the following corollaries.

Corollary 7.1.18 (Adámek, Milius, and Moss, 2021, Corollary 6.1.13). Let C
be a cocomplete category. Every endofunctor preserving colimits of λ-chains for
some infinite cardinal λ is a varietor.

Corollary 7.1.19. Let C be a complete and cocomplete category. Every endofun-
ctor preserving colimits of λ-chains for some infinite cardinal λ generates a free
monad.

Suppose the free algebra monad for an endofunctor F : C → C exists and
denote it byM = (M : C → C, µ, η). By the freeness ofM, we have a map of sets
Φ: C(FB,B)×C(A,B)→ C(MA,B) for all A,B ∈ C. We will later work with a
cartesian closed category (CCC) C, and we will need to know when this map can
be internalized to C as a map Φ: (FB ⇒ B) × (A ⇒ B) → (MA ⇒ B). To be
precise, the forgetful functor C(1,−) : C → Set satisfies the natural isomorphisms

C(1, A⇒ B) ≃ C(A,B) C(1, A×B) ≃ C(1, A)× C(1, B)

and thus we want C(1,Φ) = Φ up to these isomorphisms.
To do so we will first consider an endofunctor F : C → C which has an initial

algebra µF and thus a map of sets rec : C(FA,A)→ C(µF,A) for all A ∈ C. We
will show that when F is strong that rec internalizes to a map rec : (FA⇒ A)→
(µF ⇒ A) such that C(1, rec) = rec.

We begin by defining an F -algebra on AF A⇒A, making use of the exponential
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notation for exponential objects. The map is defined as the curried version of

(FA⇒ A)× F
(
AF A⇒A

)
(FA⇒ A)× (FA⇒ A)× F

(
AF A⇒A

)

(FA⇒ A)× F
(

(FA⇒ A)×
(
AF A⇒A

))
(FA⇒ A)× FA A

∆×id

id×str

id×F eval eval

and denote the result by ω : F
(
AF A⇒A

)
→ AF A⇒A. The suggestion of this con-

struction is courtesy of Ohad Kammar. The induced map recω : µF → AF A⇒A

is a map of algebras and thus we have the following commutative diagram

F (µF ) F
(
AF A⇒A

)

µF AF A⇒A

F rec ω

ι ω

rec ω

We will show that the map given by swapping the arguments of recω is our
required map rec.

Theorem 7.1.20. The map rec derived from recω is an internalization of rec.

Proof. Let α : FA→ A be an algebra and define ⌜α⌝ B C(1, α) : 1→ (FA⇒ A).
We now define a map µF → A by eval · (⌜α⌝× id) ·λ−1 · recω (see fig. 7.1a) which
we will show is equal to recα. By the initiality of µF , it is sufficient to show that
our defined map is a map of F -algebras.

Figure 7.1b shows the commutative diagram which must commute for our
map to be a map of F -algebras. The rightmost polygon requires more work, and
is expanded to fig. 7.1c, where we can uncurry ω. Finally, the upper right triangle
of fig. 7.1c precomposed with ⌜α⌝× id is expanded to fig. 7.2, which commutes.

Thus, we have shown recα = eval · (⌜α⌝× id) · λ−1 · recω, and the later is
equivalent to rec ·⌜α⌝ under the isomorphisms induced by C(1,−). In conclusion,
C(1, rec) = rec as desired.

We can now prove our theorem about free monads.

Theorem 7.1.21. Let C be a bi-CCC and F a strong endofunctor such that
the free monad M exists. Then the construction of universal maps out of M,
φ : C(FB,B)× C(A,B)→ C(MA,B), can be internalized to C, meaning there is
a morphism φ : (FB ⇒ B)× (A⇒ B)→ (MA⇒ B) for all A,B ∈ C such that
C(1, φ) = φ.
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Proof. Proposition 7.1.6 shows that MA is the initial algebra for A + F (−).
Furthermore, when F is strong so is A+F (−). Thus, we can apply theorem 7.1.20
and use the isomorphism (A+ FB)⇒ B ≃ (FB ⇒ B)× (A⇒ B).

Another important requirement for our denotational semantics is that the free
monad M is strong. Fortunately, M is strong when F is.

Proposition 7.1.22 (Fiore and Hur, 2008, Proposition 2.7). Suppose that the
forgetful functor U : Alg F → C has a left adjoint and let M be the induced
monad. Then M is a strong monad.

7.2 Reasoning About Effects and Handlers

Algebraic effects are a class of effects corresponding to Kleisli morphisms and
have an especially nice operational semantics. In particular, they can be char-
acterized as parameterized continuation transformers which respect the strength
and multiplication of the monad they derive from. The formalism of [Forster
et al., 2019] is suitable for modelling algebraic effects and handlers, except that
theirs is set-theoretic. We will need a categorical semantics, and so we begin by
recalling the definition of algebraic effects in an enriched setting. We must use
basic enriched category theory to give the definition of algebraic effects and state
theorems about them. Readers unfamiliar with enriched category theory may
assume that the category C is a CCC, replace V by C, and replace all instances
of V-(concept) by (concept) (e.g. V-functor by functor).

Let V be a complete and cocomplete symmetric monoidal category, C a sym-
metric monoidal V-category with cotensors1, and T : C → C a strong V-monad
with strength st : y⊗Tx→ T (y⊗x). Let CT denote the Kleisli V-category for T
and let J : C → CT denote the canonical V-functor. We then say that C has Kleisli
V-exponentials when the V-functor J(− ⊗ x) : C → CT has a right V-adjoint for
each object x ∈ C. We will also assume that C has Kleisli V-exponentials. To
define algebraic operations, we need the following construction.

Definition 7.2.1 ([Plotkin and Power, 2003]). Define the parametric lifting op-

1For readers unfamiliar with enriched category theory, the cotensor of an object x ∈ C by
an object v ∈ V = C is just the exponential v ⇒ x.
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eration (−)† by, for any v ∈ V

C(y ⊗ x, Tz) C(T (y ⊗ x), T 2z)

C(y ⊗ Tx, Tz)

C(v ⇒ (y ⊗ Tx), v ⇒ Tz) C(y ⊗ (v ⇒ Tx), v ⇒ Tz)

T

C(st,µz)
v⇒(−)

where the unlabelled map is given by composition with the comparison map
y⊗ (v ⇒ Tx)→ v ⇒ (y⊗ Tx) in C corresponding, via the definition of cotensor,
to the map v → C(y ⊗ (v ⇒ Tx), y⊗ Tx) in V given by the unit for the cotensor
v → C(v ⇒ Tx, Tx) composed with y ⊗− : C → C.

The (−)† operation is a form of parameterized lifting which is continuation
focused. We now define algebraic operations.

Definition 7.2.2 (Plotkin and Power, 2003, Definition 1). Given a strong V-
monad T : C → C, an algebraic operation on T is an Ob C-indexed family of
maps:

αx : (v ⇒ Tx)→ (w ⇒ Tx)

such that the diagram:

C(y ⊗ x, Tz) C(y ⊗ (v ⇒ Tx), v ⇒ Tz)

C(y ⊗ (w ⇒ Tx), w ⇒ Tz) C(y ⊗ (v ⇒ Tx), w ⇒ Tz)

(−)†

C(y⊗(w⇒T v),αz)(−)†

C(y⊗αx,w⇒T z)

commutes.

The definition of an algebraic operation can be equivalently characterized by
saying that α is natural in C, respects strength, and respects multiplication.

Proposition 7.2.3 (Plotkin and Power, 2003, Proposition 1). An Ob C-indexed
family of maps:

αx : (v ⇒ Tx)→ (w ⇒ Tx)

is an algebraic operation if and only if:

1. α is natural in C;
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2. α respects st in the sense that:

y ⊗ (v ⇒ Tx) v ⇒ (y ⊗ Tx) v ⇒ T (y ⊗ x)

y ⊗ (w ⇒ Tx) w ⇒ (y ⊗ Tx) w ⇒ T (y ⊗ x)

v⇒st

αy⊗xy⊗αx

w⇒st

commutes, where the unlabelled maps are comparison maps determined by
the universal property of cotensors; and

3. α respects µ in the sense that:

v ⇒ T 2x v ⇒ Tx

w ⇒ T 2x w ⇒ Tx

v⇒µx

αxαT x

w⇒µx

commutes.

In the case of V = C = Set, it is straightforward to prove that algebraic
operations and Kleisli maps are in bijective correspondence. This is also true in
the enriched case when C is V-closed. Let v be the tensor of v ∈ V with I ∈ C
(which will always exist for us).

Theorem 7.2.4 (Plotkin and Power, 2003, Theorem 2). If C is V-closed, the
C-enriched Yoneda embedding induces a bijection between maps w→ v in CT and
algebraic operations αx : (v ⇒ Tx)→ (w ⇒ Tx).

We now introduce the formalism of [Forster et al., 2019]. They define a multi-
adjunctive metalanguage, called mam, as a base language. mam extends the
call-by-push-value (CBPV) of [Levy, 2003] with a type-and-effect system. Effects
will be captured by various adjunctions, and thus the name. After defining mam
and recalling theorems about it, we will extend the set-theoretic semantics to a
categorical semantics. Forster et al. extend mam to a language eff containing
algebraic effects and handlers, which is the language we will use. To do so, we
will also extend the set-theoretic semantics of eff to a categorical semantics.

The raw term syntax of mam is presented in fig. 7.3. There are two syntactic
categories, values and computations. We have a countable number of variables
x , y, z . . . and a countable set of variant constructor labels ℓ. The unit, pairing,
and variant constructors are all standard. For a given computation M , we can
form a thunk {M} which suspends the computation. Product and variant values
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V,W ::= values
x variable
| () unit value
| (V1, V2) pairing
| injℓ V variant
| {M} thunk

M,N ::= computations
case V of product

(x1, x2)→M matching
| case V of { variant

injℓ1 x1 →M1 matching
...
injℓn

xn →Mn}
| V ! force
| return V returner
| x ←M ; N sequencing
| λx .M abstraction
|M V application
| ⟨M1,M2⟩ pairing
| prji M projection

Figure 7.3: mam syntax

can be matched upon in the standard manner. Given a thunk V , we can resume
a suspended computation by forcing it V !. A computation which does nothing
but merely returns a value V is given by return V . We write sequencing using
do-notation. Function computations abstract over values, and thus can only
be applied to values. Finally, there are pairing and projection operations for
computations.

The operational semantics of mam is presented in fig. 7.4 in the style of
[Felleisen and Friedman, 1987]. We have two kinds of frames, basic and computa-
tion frames, and two kinds of contexts, evaluation and hoisting contexts. Frames
and contexts along with their versions of substitution are defined in the standard
way. In mam, there is no distinction between basic and computation frames, but
there will be in eff. Additionally, the hoisting frames are not used in mam’s
operational semantics, but will be used in eff’s. Note that every context has
exactly one hole. The reduction semantics are defined in terms of basic CBPV
β-reductions. Note that at most one β-reduction can be applied to any term.
Finally, any reducible term uniquely decomposes into an evaluation context and
a β-reducible term, and therefore the semantics is deterministic.

The kinds and types of mam are presented in fig. 7.5. There are four kinds,



7.2. Reasoning About Effects and Handlers 109

Frames and contexts
B ::= x← [ ]; N | [ ] V | prji [ ] basic frames
F ::= B computation frames
C ::= [ ] | C[F [ ]] evaluation context
H ::= [ ] | H[B[ ]] hoisting context

Reduction M ⇝M ′

M ⇝β M
′

C[M ]⇝ C[M ′]

Beta reduction M ⇝β M
′

(×) case (V1, V2) of (x1, x2)→M

⇝β M [V1/x1, V2/x2]
(+) case injℓ V of {. . . injℓ x →M . . .}

⇝β M [V/x ]
(F ) x ← return V ; M ⇝β M [V/x ]
(U) {M}! ⇝β M

(→) (λx .M) V ⇝β M [V/x ]
(&) prji ⟨M1,M2⟩ ⇝β Mi

Figure 7.4: mam operational semantics
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K ::= kinds
| Eff effects
| Val values
| CompE computations
| Ctxt environments

E ::= effects
∅ pure effect

Environments:
Θ ::= α1, . . . , αn

Γ,∆ ::= x1 : A1, . . . , xn : An

A,B ::= value types
α type variable
| 1 unit
| A1 × A2 products
| {injℓ1 A1 variants
| . . . | injℓn

An}
| UEC thunks

C,D ::= computation types
FA returners
| A→ C functions
| C1 & C2 products

Figure 7.5: mam kinds and types

namely effects, value types, computation types, and environments. CBPV does
not need a kind system, but the introduction of an effect system necessitates it.
mam is pure, and so there is only the empty effect. The value types are standard
for CBPV with the addition of type variables and an effect label for thunks. Com-
putation types are standard as well, except now they will be stratified by effects
via kinding. Note that none of the computation types need to be labelled by an
effect E; the effect E will be part of the computation kinding and computation
typing judgments and so is not needed in the computation type formers. Finally,
we have two sorts of environments written in list notation, one for value-type
variables and one for variables with value types.

The kind system of mam is presented in fig. 7.6. Due to the existence of type
variables, all kinding judgments are with respect to a value-type variable envi-
ronment. The singular effect, the empty effect, is well-kinded. Kinding contexts
requires the value types involved are well-kinded. The rest of the kinding judg-
ments are standard, with the exception of thunks. As thunk types carry their
effect type, we must have a well-kinded computation type, which implies that the
effect is well-kinded as a side-condition of computation type kinding.

The type system of mam is presented in fig. 7.7. We make a slight exten-
sion of from Forster et al. by adding type annotations to variant injections and
to the variable bound in function abstraction. These changes ensure that each
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Effect kinding Θ ⊢k E : Eff Context kinding Θ ⊢k Γ : Ctxt

Θ ⊢k ∅ : Eff

for all x ∈ Dom(Γ): Θ ⊢k Γ(x) : Val

Θ ⊢k Γ : Ctxt

Value kinding Θ ⊢k A : Val

α ∈ Θ

Θ ⊢k α : Val Θ ⊢k 1 : Val

Θ ⊢k A1 : Val Θ ⊢k A1 : Val

Θ ⊢k A1 × A2 : Val
for every 1 ≤ i ≤ n: Θ ⊢k Ai : Val

Θ ⊢k {injℓ1 A1 | . . . | injℓn
An} : Val

Θ ⊢k C : CompE

Θ ⊢k UEC : Val

Computation kinding Θ ⊢k C : CompE (Θ ⊢k E : Eff)

Θ ⊢k A : Val

Θ ⊢k FA : CompE

Θ ⊢k A : Val Θ ⊢k C : CompE

Θ ⊢k A→ C : CompE

Θ ⊢k C1 : CompE Θ ⊢k C2 : CompE

Θ ⊢k C1 & C2 : CompE

Figure 7.6: mam kind system
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Value typing Θ; Γ ⊢ V : A (Θ ⊢k Γ : Ctxt, A : Val)

(x : A) ∈ Γ

Θ; Γ ⊢ x : A Θ; Γ ⊢ () : 1

Θ; Γ ⊢ V1 : A1 Θ; Γ ⊢ V2 : A2

Θ; Γ ⊢ (V1, V2) : A1 × A2

Θ; Γ ⊢ V : Ai

Θ; Γ ⊢ inj{ℓi,Ai}i∈I

ℓi
V : {injℓ1 A1 | . . . | injℓn

An}

Θ; Γ ⊢E M : C

Θ; Γ ⊢ {M} : UEC

Computation typing Θ; Γ ⊢E M : C (Θ ⊢k Γ : Ctxt, E : Eff , C : CompE)

Θ; Γ ⊢ V : A1 × A2 Θ; Γ, x1 : A1, x2 : A2 ⊢E M : C

Θ; Γ ⊢E case V of (x1, x2)→M : C

Θ; Γ ⊢ V : UEC

Θ; Γ ⊢E V ! : C
Θ; Γ ⊢ V : {injℓ1 A1 | · · · | injℓn

An}
for every 1 ≤ i ≤ n: Θ; Γ, xi : Ai ⊢E Mi : C

Θ; Γ ⊢E case V of {injℓ1 x1 →M1; · · · ; injℓn
xn →Mn} : C

Θ; Γ ⊢ V : A

Θ; Γ ⊢E return V : FA

Θ; Γ ⊢E M : C1 & C2

Θ; Γ ⊢E prji M : Ci

Θ; Γ ⊢E M : FA Θ; Γ, x : A ⊢E N : C

Θ; Γ ⊢E x ←M ; N : C

Θ; Γ, x : A ⊢E M : C

Θ; Γ ⊢E λxA.M : A→ C

Θ; Γ ⊢E M : A→ C Θ; Γ ⊢ V : A

Θ; Γ ⊢E M V : C

Θ; Γ ⊢E M1 : C1 Θ; Γ ⊢E M2 : C2

Θ; Γ ⊢E ⟨M1,M2⟩ : C1 & C2

Figure 7.7: mam type system
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judgement has a unique typing derivation, and so our denotational semantics will
be well defined on judgments. However, we will not write these annotations in
practice as they have no important effect for us. All typing judgments are made
with respect to a value-type variable context and a value context. Furthermore,
computation typing judgments must be indexed by the effect at which the typing
occurs, a difference from CBPV. The value typing judgments are standard, ex-
cept for the thunk typing rule which now records the effect from the computation
judgment at the type level. The computation typing judgments are also standard,
barring the addition of the effect in scope, with the exception of forcing, which
recovers the effect index from the type of the thunk.

The denotational semantics of mam is set-theoretic. Forster et al. use the
Kleisli presentation of monads, where a monad is a triple T = ⟨T, return,≫=⟩
with T : Set → Set a functor, return : Id → T a natural transformation, and
≫= a map from functions f : X → TY to functions ≫=f : TX → TY , subject
to well-known algebraic equations. The functorial action of T can be recovered
as an internal map fmap f xs B xs≫=(return ◦f). A T -algebra C = ⟨|C| , c⟩
consists of a carrier |C| and a algebra structure c as normal. The free T -algebra
⟨TX,≫=id⟩ will be denoted as FX.

Effects
⟦∅⟧

θ
B
〈
Id : Set→ Set, id : Id → Id, id : Set(X, IdY )→ Set(IdX, IdY )

〉
Value types
⟦α⟧θ B θ(α) ⟦1⟧θ B {⋆} ⟦A1 × A2⟧θ B ⟦A1⟧θ × ⟦A2⟧θ ⟦UEC⟧θ B

∣∣∣⟦C⟧θ∣∣∣
⟦{injℓ1 A1 | . . . | injℓn

An}⟧θ B ({ℓ1} × ⟦A1⟧θ) ∪ · · · ∪ ({ℓn} × ⟦An⟧θ)
Computation types
⟦FA⟧θ B F ⟦A⟧θ ⟦A→ C⟧θ B

〈∣∣∣⟦C⟧θ∣∣∣⟦A⟧θ , λfs.λx.c(fmap (λf.f(x)) fs)
〉

⟦C1 & C2⟧θ B
〈∣∣∣⟦C1⟧θ

∣∣∣× ∣∣∣⟦C2⟧θ
∣∣∣, λcs.

〈
c1(fmap π1 cs), c2(fmap π2 cs)

〉〉

Figure 7.8: mam denotational semantics for types

The denotational semantics for types in mam is presented in fig. 7.8. All
semantic functions in mam are parameterized by an assignment θ mapping type
variables α in Θ to a set θ(α). For a fixed θ, we associate to each

• effect: a monad ⟦Θ ⊢k E : Eff⟧θ, denoted by
〈
T⟦E⟧θ , return⟦E⟧θ ,≫=⟦E⟧θ

〉
or T⟦E⟧θ ;
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• value: a set ⟦Θ ⊢k A : Val⟧θ;

• E-computation: a T⟦E⟧θ -algebra ⟦Θ ⊢k C : CompE⟧θ; and

• context: the set ⟦Θ ⊢k Γ : Ctxt⟧θ B
∏

x∈Dom(Γ) ⟦Γ(x)⟧
θ
.

The pure effect is given the semantics of the identity monad. Value types have
standard semantics, and type variables have their semantics determined by θ.
Variant types corresponds to disjoint sums, and the empty variant type is the
empty set. Computation types also have the standard semantics.

Value terms
⟦x⟧θ (γ) B πx(γ) ⟦(V1, V2)⟧θ (γ) B

〈
⟦V1⟧θ (γ), ⟦V2⟧θ (γ)

〉
⟦()⟧θ (γ) B ⋆

⟦injℓ V ⟧θ (γ) B
〈
ℓ, ⟦V ⟧θ (γ)

〉
⟦{M}⟧

θ
(γ) B ⟦M⟧θ (γ)

Computation terms
⟦case V of (x1, x2)→M⟧θ (γ) B ⟦M⟧θ (γ[x1 7→ a1, x2 7→ a2])

where ⟦V ⟧θ (γ) = ⟨a1, a2⟩
⟦case V of {injℓ1 x1 →M1 · · · injℓn

xn →Mn}⟧θ B ⟦Mi⟧θ (γ[xi 7→ ai])
where ⟦V ⟧θ (γ) = ⟨ℓi, ai⟩

⟦x ←M ; N⟧θ (γ) B ⟦M⟧θ (γ)≫=Cλa. ⟦N⟧θ (γ[x 7→ a])
⟦V !⟧θ (γ) B ⟦V ⟧θ (γ) ⟦return V ⟧θ (γ) B return ( ⟦V ⟧θ (γ))
⟦λx .M⟧θ (γ) B λa. ⟦M⟧θ (γ[x 7→ a]) ⟦M V ⟧θ (γ) B (⟦M⟧θ (γ))(⟦V ⟧θ (γ))
⟦⟨M1,M2⟩⟧θ (γ) B

〈
⟦M1⟧θ (γ), ⟦M2⟧θ (γ)

〉
⟦prji M⟧θ (γ) B πi(⟦M⟧θ (γ))

Figure 7.9: mam denotational semantics for terms

Recall that we implicitly have type annotations on variant injections and
variables in function abstractions, which guarantees that typing judgments have
unique derivations. Therefore, the semantics of mam can be based on typing
judgments alone, but for readability we often only write terms.

The denotational semantics for derivations in mam is presented in fig. 7.9.
Again, all semantic constructs are parameterized by an assignment θ. To each
well-typed derivation, we assign to each

• value term: a function ⟦Θ; Γ ⊢ V : A⟧θ : ⟦Γ⟧θ → ⟦A⟧θ; and

• E-computation term: a function ⟦Θ; Γ ⊢E M : C⟧θ : ⟦Γ⟧θ →
∣∣∣⟦C⟧θ∣∣∣.
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The semantics are standard. Note that in the semantics of sequencing, we use the
Kleisli extension≫=C induced by an algebra C = ⟨|C| , c⟩ which takes a function
f : X → |C| and gives (≫=Cf) B c ◦ (fmap f) : TX → |C|.

We will now record some important properties of mam.

Theorem 7.2.5 (mam Safety, Forster et al., 2019, Theorem 2.6). Well-typed
programs do not go wrong: for all closed mam returners Θ; ⊢∅ M : FA, either
M ⇝ N for some Θ; ⊢∅ N : FA or else M = return V for some Θ; ⊢ V : A.

The following theorem extends an existing proof of termination for CBPV by
[Doczkal, 2007]. We say that a term M diverges, and write M ⇝∞ if for every
n ∈ N there exists some N such that M ⇝n N . We say that M does not diverge
when M ̸⇝∞.

Theorem 7.2.6 (mam Termination, Forster et al., 2019, Theorem 2.7). There
are no infinite reduction sequences: for all mam terms ; ⊢∅ M : FA, we have
M ̸⇝∞ and there exists some unique ; ⊢ V : A such that M ⇝∗ return V .

The following exposition is also from [Forster et al., 2019], which we will need
to state compositionality, soundness, and adequacy. Define ground types as the
subclass of value types given by:

(ground values) G ::= 1 | G1 ×G2 | {injℓ1 G1 | . . . | injℓn
Gn}

We will need them in order to define contextual equivalence.
Program contexts X [ ] and their type judgments can be defined, but they

are verbose and not strictly required. For two computation terms M1 and M2,
contextual equivalence essentially requires defining and then quantifying over the
set Ξ[M1,M2] B

{〈
X [M1],X [M2]

〉∣∣∣X [ ] is a well-typed context
}
. This set can be

defined directly without first defining contexts.

Definition 7.2.7 ([Forster et al., 2019]). We say that an environment Γ′ extends
an environment Γ, and write Γ′ ≥ Γ if Γ′ extends Γ as a partial function from
identifiers to value types. Given two well-typed computations Θ0; Γ0 ⊢E0 M1 : C0

and Θ0; Γ0 ⊢E0 M2 : C0, let Ξ[Θ0; Γ0 ⊢E0 M1,M2 : C0] be the smallest set of tuples
⟨Θ′,Γ′, V1, V2, A⟩ and ⟨Θ′,Γ′, E ′, N1, N2, C⟩ that is compatible with the typing
rules and contains all the tuples ⟨Θ,Γ, E0,M1,M2, C0⟩, where Θ ⊇ Θ0 and Γ ≥
Γ0. Call this set the pairs of contexts plugged with M1 and M2. Define the set
Ξ[Θ0; Γ0 ⊢ V1, V2 : A] for contexts plugged with values analogously.
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In the above definition, Θ′; Γ′ ⊢ V1, V2 : A and Θ′; Γ′ ⊢E′ N1, N2 : C are
modeled by the tuples ⟨Θ′,Γ′, V1, V2, A⟩ and ⟨Θ′,Γ′, E ′, N1, N2, C⟩ respectively. If
the tuple ⟨Θ′,Γ′, V1, V2, A⟩ is in Ξ[Θ0; Γ0 ⊢E0 M1,M2 : C0], then so is the tuple〈
Θ′,Γ′, ∅, return V1, return V2, FA

〉
by the compatibility requirement.

Let X range over both value and E-computation types, and phrases P range
over both value and computation terms. Judgments of the form Θ; Γ ⊢E P : X are
meta-judgments, ranging over value judgments Θ; Γ ⊢ P : X and E-computation
judgment Θ; Γ ⊢E P : X.

Definition 7.2.8 ([Forster et al., 2019]). Let Θ; Γ ⊢E P,Q : X be two mam
phrases. We say that P and Q are contextually equivalent and write Θ; Γ ⊢E

P ≃ Q : X when, for all pairs of plugged closed ground-returner pure con-
texts

〈
∅, ∅, ∅,MP ,MQ, FG

〉
in Ξ[Θ; Γ ⊢E P,Q : X] and for all closed ground value

terms ; ⊢ V : G, we have:

MP ⇝
∗ return V ⇐⇒ MQ ⇝

∗ return V

We can now state the final theorems about mam.

Theorem 7.2.9 (mam Compositionality, Forster et al., 2019, Theorem 2.8). The
meaning of a term depends only on the meaning of its sub-terms: for all pairs of
well-typed plugged mam contexts MP , MQ in Ξ[Θ; Γ ⊢E P,Q : X], if ⟦P ⟧ = ⟦Q⟧
then ⟦MP ⟧ = ⟦MQ⟧.

Let⇝cong be the smallest relation containing⇝β that is closed under the term
formation constructs, and so contains ⇝ as well, and let ≃cong be the smallest
congruence relation containing ⇝β.

Theorem 7.2.10 (mam Soundness, Forster et al., 2019, Theorem 2.9). Reduction
preserves the semantics: for every pair of well-typed mam terms Θ; Γ ⊢E P,Q : X,
if P ≃cong Q then ⟦P ⟧ = ⟦Q⟧. In particular, for every well-typed closed term of
ground type ;⊢∅ P : FG, if P ⇝∗ return V then ⟦P ⟧ = ⟦V ⟧.

Theorem 7.2.11 (mam Adequacy, Forster et al., 2019, Theorem 2.10). Deno-
tational equivalence implies contextual equivalence: for all well-typed mam terms
Θ; Γ ⊢E P,Q : X, if ⟦P ⟧ = ⟦Q⟧ then P ≃ Q.

Thus, we see that the set-theoretic semantics is quite well-behaved. In fact, the
above theorems imply that for all well-typed computations Θ; Γ ⊢E M,M ′ : C, if
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M ⇝cong M
′ then M ≃M ′. However, we will need to move to a richer setting in

order to prove results about AD. Note that the semantics of mam is essentially
an indexed version of the Eilenberg-Moore adjunction models of CBPV with type
variables.

We now recall what is required for an Eilenberg-Moore CBPV model.

Definition 7.2.12 (Kammar, 2014, Definition 2.11). An Eilenberg-Moore CBPV
model is a pair ⟨C, T ⟩ where:

• C is a distributive category;

• T is a strong monad over C; and

• C has all exponentials A ⇒ |B| of all T -algebra carriers |B| by all objects
A ∈ C.

The definition of an EM CBPV model does not account for effect indices or
type variables. mam only has one effect index, the pure effect ∅, but it will be
useful to generalize to many effects. Adapting the above definition for mam, we
define the following.

Definition 7.2.13. A mam modelM is a quintuple ⟨C,Θ, θ,E, {TE}E∈E⟩ where:

• C is a distributive category;

• Θ is a list of value-type variables;

• θ is an assignment from Θ to C-objects;

• E is a set of well-kinded effects Θ ⊢k E : Eff including ∅;

• {TE}E∈E is a collection of strong monads over C such that T∅ = Id; and

• for each E ∈ E, C has all exponentials A ⇒ |B| of all TE-algebra carriers
|B| by all objects A ∈ C.

The category C and its distributive structure models values, and the EM cate-
gories model computation. Note that each pair ⟨C, TE⟩ is an EM CBPV model and
that no relation between distinct pairs need hold. Importantly, theorems 7.2.9
and 7.2.10 still hold for the categorical semantics, their proofs are merely induc-
tion over judgments and plugged contexts as in the set-theoretic case.
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M,N ::= . . . computations
| op V operation call
| handle M with H handling construct
H ::= handlers
{return x 7→M} return clause
| H ⊎ {op p k 7→ N} operation clause

Figure 7.10: eff syntax (extending fig. 7.3)

We can now extend mam to the eff language of [Forster et al., 2019] which
contains algebraic effects and handlers. The raw term syntax of eff is defined in
fig. 7.10, extending fig. 7.3. We add two new forms of computations, operation
calls for effects and handling constructs for handling said effects. We also add the
new syntactic class of handlers which contains the syntax for defining handlers.
For a handlerH B {return x 7→M}⊎

{
op p k 7→ Nop

}
op∈E

, define the projections
Hreturn B M and Hop B Nop. The type system will ensure that the operation
projection is well-defined.

Frames and contexts
· · · F ::= . . . | handle [ ] with H computation frame

Beta reduction
(ret) handle (return V ) with H ⇝β H

return[V/x ]
(op) handle H[op V ] with H ⇝β

Hop[V/p, {λx .handle H[return x ] with H}/k]

Figure 7.11: eff operational semantics (extending fig. 7.4)

The operational semantics of eff is defined in fig. 7.11, extending fig. 7.4.
We add a new computation frame consisting of a handler with a hole for the
executing computation. The operational semantics is extended with β-reductions
for handlers and operations. The (ret)-reduction says that a computation which
has finished computing is handled by the return clause of a handler. The (op)-
reduction is more involved. In the left-hand side of the rule, we use a hoisting
frame filled with an operation. Note that a hoisting frame consists only of basic
frames and thus cannot contain a handler. Therefore, we always match on the
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E ::= . . . effects
| {op : A→ B} ⊎ E arity assignment
K ::= . . . kinds
| Hndlr handlers
R ::= A E⇒E′

C handler types

Figure 7.12: eff kinds and types (extending fig. 7.5)

Effect kinding · · ·

Θ ⊢k A : Val Θ ⊢k B : Val op /∈ E Θ ⊢k E : Eff

Θ ⊢k {op : A→ B} ⊎ E : Eff

Handler kinding Θ ⊢k R : Hndlr

Θ ⊢k A : Val Θ ⊢k E,E
′ : Eff Θ ⊢k C : CompE′

Θ ⊢k A
E⇒E′

C : Hndlr

Figure 7.13: eff kind system (extending fig. 7.6)

innermost handler. The right-hand side of the rule captures the the hoisting frame
and creates a continuation with it while rewrapping it with the same handler,
and thus corresponds to a deep handler. The continuation and the operations
parameter are then handled by the appropriate clause of the handler.

The kinds and types of eff are defined in fig. 7.12, extending fig. 7.5. Effects
now consist of a disjoint union of operations op : A → B, each annotated with
its parameter A and arity B. A new kind for handlers is introduced, as well as a
corresponding type. A handler of type A E⇒E′

C handles a computation of type
FA which may use the effect E and produces a computation of type C which
may use the effect E ′.

The kind system of eff is presented in fig. 7.13, extending fig. 7.6. Effect
types may only contain each operation at most once. Kinding for handler types
ensures that the effect annotation for the output effect E ′ matches the effect label
of the computation type C of the handler. Note that operations and handler types
can contain value-type variables.

There is an important subtlety hiding in the kinding rules for eff. The
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kinding rule for an effect {op : A→ B}⊎E combines a well-kinded effect E with
two well-kinded value types A and B. Value types include thunks UE, which
themselves are labelled with effects. Thus, what is preventing us from sneaking
in the effect {op : A→ B} ⊎ E into A or B and creating a recursive type? If
we try to construct a kinding derivation for such a situation, then must first
well-kind A and B. We then perform some additional number of kinding steps
until we must again well-kind {op : A→ B}⊎E. However, derivations themselves
have no recursive structure, and so we must repeat the same sequence of step,
thus requiring us to yet again well-kind {op : A→ B} ⊎E. Kind derivations are
finite, and thus we have a contradiction. Therefore, recursive effect types are not
well-kinded. It is possible, however, for A or B to contain just E, and in fact we
will take advantage of this fact in our proof of continuation reverse mode to let
our operations contain function types.

Computation typing · · ·

(op : A→ B) ∈ E Θ; Γ ⊢ V : A

Θ; Γ ⊢E op V : FB

Θ; Γ ⊢E M : FA Θ; Γ ⊢ H : A E⇒E′
C

Θ; Γ ⊢E′ handle M with H : C

Handler typing Θ; Γ ⊢ H : R (Θ ⊢k Γ : Ctxt, R : Hndlr)

Θ; Γ, x : A ⊢E M : C
for all 1 ≤ i ≤ n: Θ; Γ, p : Ai, k : UE(Bi → C) ⊢E Ni : C

Θ; Γ ⊢
{
return xA 7→M

}
⊎ {opi p k 7→ Ni|1 ≤ i ≤ n} : A {opi:Ai→Bi|1≤i≤n}⇒E C

Figure 7.14: eff type system (extending fig. 7.7)

The type system of eff is presented in fig. 7.14, extending fig. 7.7. We again
make a slight extension of Forster et al. by adding type annotations to the return
clause of handler definitions to ensure typing judgements have unique derivations.
An operation op : A→ B ∈ E is parameterized by a value of type A and produces
a computation of type FB with effect index E. Note that this rule gives a may
interpretation to effect indices, any operation in the effect may occur, but it is not
required to. The handling construct takes a handler H : A E⇒E′

C and M : FA
which may use the effect E and creates a computation of type C which may use
the effect E ′. The handling construct is the sole method of changing effect indices.



7.2. Reasoning About Effects and Handlers 121

Handler typing ensures if a computation with effect {opi : Ai → Bi|1 ≤ i ≤ n} has
a corresponding clause for each operation opi. It also ensures that all cases are
computations of the same type and effect.

As with mam, we have safety and termination. Note that the choice to include
effect annotations is necessary to ensure termination.

Theorem 7.2.14 (eff Safety, Forster et al., 2019, Theorem 3.4). Well-typed
programs don’t go wrong: for all closed eff returners Θ;⊢∅ M : FA, either
M ⇝ N for some Θ;⊢∅ N : FA or else M = return V for some Θ; ⊢ V : A.

Theorem 7.2.15 (eff Termination, Forster et al., 2019, Theorem 3.5). There
are no infinite reduction sequences: for all eff terms ; ⊢∅ M : FA, we have
M ̸⇝∞, and there exists some unique ; ⊢ V : A such that M ⇝∗ return V .

The termination proof of eff is essentially that of [Kammar, Lindley, and
Oury, 2013, Theorem 1]. It observes that during effect handling, the handler is
reinvoked, possibly more than once, but always on a subterm. The proof sketch
notes that the termination result depends crucially on the effect type system, as is
the case for delimited continuations, shown in [Ariola, Herbelin, and Sabry, 2009,
Proposition 26]. The strong normalization of the systems described by Ariola,
Herbelin, and Sabry holds only in the typed cases in which recursive effect types
are disallowed. Likewise, the restriction to non-recursive effect types in eff is
integral to the termination proof.

We now introduce the family of monads used in the denotational semantics
of eff, each of which is a tree-style monad.

Definition 7.2.16 ([Forster et al., 2019]). A signature Σ is a pair consisting of
a set |Σ| whose elements we call operation symbols, and a function arityΣ from
|Σ| assigning to each operation symbol f ∈ |Σ| a (possibly infinite) set arityΣ(f).
We write (f : A) ∈ Σ when f ∈ |Σ| and arityΣ(f) = A. Given a signature Σ and
a set X, we inductively form the set TΣX of Σ-terms over X by:

t ::= x | f ⟨ta⟩a∈A (x ∈ X, (f : A) ∈ Σ)

The assignment TΣ together with the following assignments

return x B x t≫=f B t[f(x)/x]x∈X (f : X → TΣY )

form a monad TΣ. The TΣ-algebras ⟨C, c⟩ are in bijective correspondence with
Σ-algebras on the same carrier. These are pairs ⟨C, ⟦−⟧⟩ where ⟦−⟧ assigns to
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each (f : A) ∈ Σ a function ⟦−⟧ : CA → C from A-ary tuples of C elements to
C. The bijection is given by setting ⟦f⟧ ⟨ξa⟩a∈A to be c(f ⟨ξa⟩a∈A).

We will refer to the aforementioned monad as the Σ-term monad. To extend
mam’s denotational semantics to eff, take a fixed variable assignment θ and
assign to each

• handler type: a pair ⟦Θ ⊢k X : Hndlr⟧θ = ⟨C, f⟩ consisting of an algebra
C and a function f into the carrier of the algebra |C|.

Effects
⟦E⟧θ B T{opp:⟦B⟧θ|(op:A→B)∈E,p∈⟦A⟧θ}

Handler types

⟦A E⇒E′
C⟧

θ
B
{
⟦E⟧θ-algebras with carrier

∣∣∣⟦C⟧θ∣∣∣}× ∣∣∣⟦C⟧θ∣∣∣⟦A⟧θ

Figure 7.15: eff denotational semantics for types (extending fig. 7.8)

The denotational semantics for types in eff is presented in fig. 7.15, extending
fig. 7.8. An effect E induces a signature, for each operation op : A → B ∈ E

and p ∈ ⟦A⟧θ we define an operation symbol opp with arity ⟦B⟧θ. We define
the monad ⟦E⟧θ to be the tree monad for this signature. Note that when E

is the empty set the induced monad is the identity monad. The semantics for
the handler type A E⇒E′

C is a pair of a ⟦E⟧θ-algebra with carrier
∣∣∣⟦C⟧θ∣∣∣ and a

function ⟦A⟧θ ⇒
∣∣∣⟦C⟧θ∣∣∣. The ⟦E ′⟧θ-algebra structure of ⟦C⟧θ is not required to

relate in any way to the ⟦E⟧θ-algebra component of the handler.
The denotational semantics for terms in eff is presented in fig. 7.16, extending

fig. 7.9. The interpretation of an effectful operation op V use the fact that the
a Σ-term monad where op ∈ Σ has an operation symbol op⟦V ⟧θ(γ), and is given
the denotation op⟦V ⟧θ(γ) ⟨return b⟩b∈⟦B⟧θ . Note that λk.λp.opp

〈
k(b)

〉
b∈⟦B⟧θ is an

algebraic operation. The semantics of the handling construct used the Kleisli
extension of the algebra induced by the handler and the function induced by the
return clause of the handler. For the handler, the operations induce an algebra for
the relevant tree monad by giving an interpretation to all the operation symbols
and the return clause induces a function in the obvious way.

eff shares mam’s ground types, and so plugged contexts and the equivalences
≃ and ≃cong are defined the same as in mam. Again, as with mam, we have the
following theorems.
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Computation terms · · ·
⟦op V ⟧θ (γ) B op⟦V ⟧θ(γ) ⟨return b⟩b∈⟦B⟧θ
⟦handle M with H⟧θ (γ) B ⟦M⟧θ (γ)≫=Df

where ⟦H⟧θ (γ) =
〈
D, f : ⟦A⟧θ →

∣∣∣⟦C⟧θ∣∣∣〉
Handler terms
⟦{return x 7→M} ⊎ {op p k 7→ Nop}op⟧θ (γ) B ⟨D, f⟩
where D’s algebra structure and f given by:
⟦opq⟧D ⟨ξa⟩a B ⟦Nop⟧θ (γ[q/p, ⟨ξa⟩a/k]) f(a) B ⟦M⟧θ (γ[a/x])

Figure 7.16: eff denotational semantics for terms (extending fig. 7.9)

Theorem 7.2.17 (eff Compositionality, Forster et al., 2019, Theorem 3.6). The
meaning of a term depends only on the meaning of its sub-terms: for all pairs of
well-typed plugged eff contexts MP , MQ in Ξ[Θ; Γ ⊢E P,Q : X], if ⟦P ⟧ = ⟦Q⟧
then ⟦MP ⟧ = ⟦MQ⟧.
Theorem 7.2.18 (eff Soundness, Forster et al., 2019, Theorem 3.7). Reduction
preserves the semantics: for every pair of well-typed eff terms Θ; Γ ⊢E P,Q : X,
if P ≃cong Q then ⟦P ⟧ = ⟦Q⟧. In particular, for every well-typed closed term of
ground type ;⊢∅ P : FG, if P ⇝∗ return V then ⟦P ⟧ = ⟦V ⟧.
Theorem 7.2.19 (eff Adequacy, Forster et al., 2019, Theorem 3.8). Denota-
tional equivalence implies contextual equivalence: for all well-typed eff terms
Θ; Γ ⊢E P,Q : X, if ⟦P ⟧ = ⟦Q⟧ then P ≃ Q.

All together, the above theorems imply that for all well-typed computations
Θ; Γ ⊢E M,M ′ : C, if M ⇝cong M

′ then M ≃ M ′ as they did with mam. Thus,
the set-theoretic operational semantics are quite well-behaved.

We will now show how to extend eff’s semantics to categorical semantics. Let
C be a bi-cartesian closed category. We first need to change our characterization
the Σ-term monad. In Set, every object is a sum of singleton sets of its elements,
which means

A⇒ B ∼=
∐

a∈A

1
⇒ B ∼=

∏
a∈A

(1⇒ B) ∼=
∏
a∈A

B.

Let Σ be a signature. Define the functor F 1
Σ as

F 1
ΣX B

∐
f∈|Σ|

∏
a∈arityΣ (f)

X.
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Note that, in Set, the functor ∏a∈A− preserves colimits of λ-chains for large
enough λ. Then the Σ-term monad TΣ is the free monad for F 1

Σ which exists by
consequence of corollary 7.1.18 as Set is cocomplete. Furthermore, TΣ is the free
monad for

F 2
ΣX B

∐
f∈|Σ|

(arityΣ (f)⇒ X).

The natural isomorphism between F 1
Σ and F 2

Σ is used implicitly in the semantics
of eff. In other bi-CCCs, the functor F 1

Σ is not defined because arityΣ(f) is not
a set, and thus we focus on F 2

Σ. In the semantics of eff, the signature Σ is of a
special form, i.e. for an effect E and semantic interpretation ⟦−⟧θ,

Σ =
{
opp : ⟦B⟧θ

∣∣∣(op : A→ B) ∈ E, p ∈ ⟦A⟧θ
}

and so in Set we have

F 2
ΣX =

∐
opp∈|Σ|

(⟦B⟧θ ⇒ X)

=
∐

op:A→B∈E, p∈⟦A⟧θ
(⟦B⟧θ ⇒ X)

∼=
∐

op:A→B∈E

∐
p∈⟦A⟧θ

(⟦B⟧θ ⇒ X)

∼=
∐

op:A→B∈E

⟦A⟧θ × (⟦B⟧θ ⇒ X) C F 3
Σ.

We then have that TΣ is the free monad on Set for F 3
Σ when Σ is induced by an

effect. This formulation of TΣ is what we require to generalize the effect monad
to arbitrary bi-CCCs.

Definition 7.2.20. Let C be a bi-CCC. An effect signature Σ is a triple consisting
of a finite set |Σ| whose elements we call operation symbols, an assignment arityΣ

assigning each element op ∈ |Σ| an object arityΣ(op) ∈ C to its arity, and an
assignment assigning each element op ∈ |Σ| an object paramΣ(op) ∈ C to its
parameters. We write (op : A → B) ∈ Σ when op ∈ |Σ|, paramΣ(op) = A

and arityΣ(op) = B. Define the effect functor FΣ : C → C induced by an effect
signature Σ to be

FΣX B
∐

op:A→B∈Σ
A× (B ⇒ X).

If the free monad for FΣ exists, we call it the effect monad induced by the effect
signature Σ and denote it TΣ with the underlying functor denoted by TΣ.
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Our semantics, and indeed the very definition of an algebraic operation, re-
quires that TΣ is strong. Proposition 7.1.22 tells us that TΣ is strong when FΣ is,
and this is always the case.

Proposition 7.2.21. For any effect signature Σ, the effect functor FΣ is strong.

Proof. For any objects A,B ∈ C, the functors A × − and B ⇒ − are strong,
and the composition of strong functors is strong, and so A× (B ⇒ −) is strong.
FΣ is a coproduct of functors of this form, and so it suffices to show that strong
functors are closed under coproduct.

Suppose that for a finite set I we have strong functors Fi for i ∈ I with
strengths sti : A× FiB → Fi (A×B). Define the strength of ∐i∈I Fi as

A×∐i∈I FiB
∐

i∈I A× FiB
∐

i∈I Fi (A×B)≃
∐

i∈I
sti

where the isomorphism ≃ is distribution of products over coproducts, which holds
in any bi-CCC. The above map is clearly natural, and so it remains to show it
respects the unitors and associators of the product. For unitors, we have the
following diagram

1×∐i∈I FiB
∐

i∈I 1× FiB
∐

i∈I Fi (1×B)

∐
i∈I FiB

≃

λ

∐
i∈I

sti

∐
i∈I

λ

∐
i∈I

Fiλ

which commutes. For the associator, we have the following diagram

(A1 × A2)×
∐
i∈I
FiB

∐
i∈I

(A1 × A2)× FiB
∐
i∈I
Fi

(
(A1 × A2)×B

)

A1 ×
(
A2 ×

∐
i∈I
FiB

)

A1 ×
∐
i∈I

(A2 × FiB) ∐
i∈I
A1 × (A2 × FiB)

A1 ×
∐
i∈I
Fi (A2 ×B) ∐

i∈I
A1 × Fi (A2 ×B) ∐

i∈I
Fi

(
A1 × (A2 ×B)

)

≃

α

∐
i∈I

sti

∐
i∈I

α ∐
i∈I

Fiα
id×≃

≃

id×
∐
i∈I

sti

∐
i∈I

id×sti

≃ ∐
i∈I

sti
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which also commutes. Thus, our proposed strength is indeed one and so FΣ is
strong.

Note that effect monads are not guaranteed to exist in an arbitrary C. Thus,
we will need to assume they do for our semantics. When TΣ exists, each operation
symbol op ∈ |Σ| induces an algebraic operation of TΣ in an analogous manner to
the construction in Set.

Proposition 7.2.22. Let C be a bi-CCC and Σ an effect signature. If the effect
monad TΣ exists, then for op : A→ B the family of maps

αop
X : (B ⇒ TΣX)→ (A⇒ TΣX)

k 7→ λa.φX

(
ιop
(
⟨a, k⟩

))
defined using the internal language of a bi-CCC forms an algebraic operation.

Proof. The proof is the analogous to the set theoretic case.

Clearly each effect E and semantic interpretation ⟦−⟧θ induce an effect signa-
ture

{
op : ⟦A⟧θ → ⟦B⟧θ

∣∣∣(op : A→ B) ∈ E
}

in any bi-CCC, and furthermore in
Set that the effect monad induced by this effect signature is isomorphic to the
term monad induced by the signature corresponding to E and ⟦−⟧θ. Thus, we
will use effect signatures and effect monads in our extension of eff’s semantics.

We now turn our attention to handlers. Recall the typing rule for handlers
where E B {opi : Ai → Bi|1 ≤ i ≤ n}:

Θ; Γ, x : A ⊢E′ M : C
for all 1 ≤ i ≤ n: Θ; Γ, p : Ai, k : UE′(Bi → C) ⊢E′ Ni : C

Θ; Γ ⊢ {return x 7→M} ⊎ {opi p k 7→ Ni|1 ≤ i ≤ n} : A E⇒E′
C

For a fixed value-type assignment θ and semantic interpretation ⟦−⟧θ, each op-
eration clause gives a morphism

⟦Ni⟧θ : ⟦Γ⟧θ × ⟦Ai⟧θ ×
(
⟦Bi⟧θ ⇒

∣∣∣⟦C⟧θ∣∣∣)→ ∣∣∣⟦C⟧θ∣∣∣
which we then curry to get

⟦Ni⟧θ : ⟦Γ⟧θ →
(
⟦Ai⟧θ ×

(
⟦Bi⟧θ ⇒

∣∣∣⟦C⟧θ∣∣∣)
)
⇒
∣∣∣⟦C⟧θ∣∣∣

and tuple all clauses together to get

〈
⟦Ni⟧θ

〉
1≤i≤n

: ⟦Γ⟧θ →
∏

1≤i≤n

(⟦Ai⟧θ ×
(
⟦Bi⟧θ ⇒

∣∣∣⟦C⟧θ∣∣∣)
)
⇒
∣∣∣⟦C⟧θ∣∣∣

 .
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The codomain is naturally isomorphic to

∐
1≤i≤n

(
⟦Ai⟧θ ×

(
⟦Bi⟧θ ⇒

∣∣∣⟦C⟧θ∣∣∣)
)
⇒
∣∣∣⟦C⟧θ∣∣∣

which is exactly an (internal) FΣ-algebra FΣ

∣∣∣⟦C⟧θ∣∣∣⇒ ∣∣∣⟦C⟧θ∣∣∣ for the effect signa-
ture Σ B

{
op : ⟦A⟧θ → ⟦B⟧θ

∣∣∣(op : A→ B) ∈ E
}

induced by E and ⟦−⟧θ. Fur-

thermore, the return clause gives a morphism ⟦Γ⟧θ →
(
⟦A⟧θ ⇒

∣∣∣⟦C⟧θ∣∣∣). There-
fore, we define handler types as

⟦A E⇒E′
C⟧

θ
B
(
FΣ

∣∣∣⟦C⟧θ∣∣∣⇒ ∣∣∣⟦C⟧θ∣∣∣)× (∣∣∣⟦C⟧θ∣∣∣⇒ ⟦A⟧θ) .
The categorical denotational semantics for types in eff is summarized in fig. 7.17.

Effects
⟦E⟧θ B T{op:⟦A⟧θ→⟦B⟧θ|(op:A→B)∈E}

Handler types

⟦A E⇒E′
C⟧

θ
B
(
FΣ

∣∣∣⟦C⟧θ∣∣∣⇒ ∣∣∣⟦C⟧θ∣∣∣)× (∣∣∣⟦C⟧θ∣∣∣⇒ ⟦A⟧θ)
where Σ B

{
op : ⟦A⟧θ → ⟦B⟧θ

∣∣∣(op : A→ B) ∈ E
}

Figure 7.17: eff categorical denotational semantics for types

The categorical denotational semantics for terms in eff is similar to Set
semantics. For operations, the typing rule is

(op : A→ B) ∈ E Θ; Γ ⊢ V : A

Θ; Γ ⊢E op V : FB

so when defining an interpretation ⟦−⟧θ we must define a map ⟦Γ⟧θ → ⟦E⟧θ ⟦B⟧θ
from a map ⟦V ⟧θ : ⟦Γ⟧θ → ⟦A⟧θ. Let T be the effect monad ⟦E⟧θ (which we
have assumed exists) and F the associated effect functor. As T is the free monad
for F , there is an algebra φ⟦B⟧θ : FT ⟦B⟧θ → T ⟦B⟧θ. In the internal language,
we define

⟦op V ⟧θ (γ) B φ⟦B⟧θ

(
ιop

(〈
⟦V ⟧θ (γ), return

〉))
where ιop maps into the op-component of F . This definition is essentially the
same as the Set semantics. Importantly, note that the denotation is derived
from the algebraic operation αop of proposition 7.2.22, i.e. it is αop(return). For
handler terms, we define a handler as described above where χ : ∏i (Ai ⇒ B) ∼=
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(∐i Ai) ⇒ B. For handling computations, we use the internal free algebra map
≫= : (FΣB ⇒ B)×(A⇒ B)→ (TΣA⇒ B) which by theorem 7.1.21 exists when
TΣ does as FΣ is strong. The categorical denotational semantics for terms in eff
is summarized in fig. 7.18.

Computation terms · · ·

⟦op V ⟧θ (γ) B φ⟦B⟧θ

(
ιop

(〈
⟦V ⟧θ (γ), return

〉))
⟦handle M with H⟧θ (γ) B ⟦M⟧θ (γ)≫= ⟦H⟧θ (γ)

Handler terms

⟦{return x 7→M} ⊎ {op p k 7→ Nop}op⟧θ (γ) B
〈
χ

(〈
⟦Nop⟧θ

〉
op

)
, ⟦M⟧θ

〉

Figure 7.18: eff categorical denotational semantics for terms

We can now define an eff model, which collects our assumptions.

Definition 7.2.23. An eff model M is a triple ⟨C,Θ, θ⟩ where:

• C is a bi-CCC;

• Θ is a list of value-type variables;

• θ is an assignment from Θ to C-objects;

• For any effect signature Σ, the effect monad TΣ exists.

Observe that, unlike a mam model defined in definition 7.2.13, we do not re-
quire a set of effects, nor a collection of monads, nor do we include a condition of
exponentiating algebras. These requirements would be redundant. We now have
a way to generate well-kinded effects and associate to each a strong monad. Fur-
thermore, because C is cartesian closed, we can always form exponential algebras.
Thus, every eff model induces a mam model.

Proposition 7.2.24. Let M = ⟨C,Θ, θ⟩ be a eff model. Define the set E B
{E : Θ ⊢k E : Eff} and for E ∈ E define TE B T⟦E⟧θ . Then ⟨C,Θ, θ,E, {TE}E∈E⟩
is a mam model.

We believe the categorical denotational semantics still satisfy theorems 7.2.17
and 7.2.18 of compositionality and soundness respectively. Compositionality is
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still an induction on the plugged context, and the behavior of the categorical se-
mantics lets this go through. Likewise, soundness requires checks that β-reduction
preserves semantics, and by our constructions this holds. We do not provide
proofs, but see no obstruction to the aforementioned sketches.

It will be useful to identify some requirements on the category C in the defini-
tion of an eff model to ensure that the required free monads exist. Suppose that
C is complete and cocomplete, as well as that all functors of the form B ⇒ −
preserve λB-chains for some ordinal λB dependent on B. Then any effect functor
FΣ preserves ⋃op:A→B∈Σ λB chains. Therefore, the effect monad TΣ exists in C by
corollary 7.1.18 and theorem 7.1.11.

Proposition 7.2.25. Suppose that C is complete and cocomplete, as well as that
all functors of the form B ⇒ − preserve λB-chains for some ordinal λB dependent
on B. Then any triple ⟨C,Θ, θ⟩ is an eff model.

The final extension we shall make to eff is the addition of base types, base
constants, and built-in functions on base types.

Definition 7.2.26. An eff signature is a quintuple ⟨B,C, F, typeconst, typefunc⟩
where:

• B is a set of base types;

• C is a set of base constants;

• F is a set of built-in functions;

• typeconst : C → B is a function assigning types to constants; and

• typefunc : F → ∐
n,m∈NB

n ×Bm is a function assigning types to functions.

Define Cb B type−1
const(b) for b ∈ B and C(b1,...,bn) B

∏
1≤i≤n Cbi

for (b1, . . . , bn) ∈
Bn, n ∈ N. Next, define dom(f) B Cπ1(typefunc(f)) and cod(f) B Cπ2(typefunc(f)).
An eff operational signature consists of a signature as above and additionally

• a dependent function eval : ∏f∈F dom(f)⇒ cod(f) specifying the behavior
of each built-in function.

Fix an operational signature Π = ⟨B,C, F, typeconst, typefunc, eval⟩. The syn-
tax extension for eff is presented in fig. 7.19. We denote constants by c ∈ C, and
built-in functions by f ∈ F , and distinguish their use in syntax with an overline.
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The operational semantics extension for eff is presented in fig. 7.20. We need
only add one family of β-reductions that lifts the eval function to syntax. The
types extension of eff is presented in fig. 7.21. We add a base type b for each
b ∈ B. We will use the preexisting function type for built-in functions. The
kind system extension of eff is presented in fig. 7.22. Every base type b ∈ B

is a well-kinded value type. The type system extension of eff is presented in
fig. 7.23. Each constant and built-in function is given a type based on the sig-
nature. We believe that the operational semantics still satisfy theorems 7.2.14
and 7.2.15 of safety and termination respectively. Safety should still hold as we
only have one extra case of application and we provide β-reductions when apply
a built-in function in an empty typing context. Furthermore, termination should
still hold because we eliminate built-in functions during reduction, producing only
constants.

An operational signature specifies how a built-in function acts on constants.
Thus, we need to ensure that models respect Π.

Definition 7.2.27. Let Π = ⟨B,C, F, typeconst, typefunc, eval⟩ be an operational
signature. An eff Π-model M is a sextuple ⟨C,Θ, θ, ⟦−⟧B , ⟦−⟧C , ⟦−⟧F ⟩ where:

• ⟨C,Θ, θ⟩ is an eff model;

• ⟦−⟧B : B → Ob C is an assignment of base types to objects;

• ⟦−⟧C : ∏c∈C C
(

1, ⟦typeconst(c)⟧B
)

is a dependent function assigning con-
stants to generalized points;

• ⟦−⟧F : ∏f∈F C
(
⟦dom(f)⟧B , ⟦cod(f)⟧B

)
is a dependent function assigning

built-in functions to morphisms;

such that eval(f)(c1, . . . , cn) = (c′
1, . . . , c

′
m) implies

⟦f⟧F ·
〈
⟦c1⟧C , . . . , ⟦cn⟧C

〉
=
〈
⟦c′

1⟧C , . . . , ⟦c′
m⟧C

〉
for all f ∈ F and (c1, . . . , cn) ∈ dom(f).

We can now describe the semantic extension of eff with respect to a fixed
operation signature Π and Π-model M. The categorical denotational semantics
extension of types for eff is presented in fig. 7.24. The only new class of types are
base types, and we use the interpretation provided byM. The categorical deno-
tational semantics extension of terms for eff is presented in fig. 7.25. We again
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V,W ::= . . . values
| c constants
M,N ::= . . . computations
| f V built-in functions

Figure 7.19: eff syntax extension (extending fig. 7.10)

Beta reduction
(const) f ⟨c1, . . . , cn⟩ ⇝β return ⟨c′1, . . . , c′

m⟩
where eval(f)(c1, . . . , cn) = (c′

1, . . . , c
′
m)

Figure 7.20: eff operational semantics extension (extending fig. 7.11)

A,B ::= . . . value types
| b base type for b ∈ B

Figure 7.21: eff types extension (extending fig. 7.12)

Value kinding · · ·

b ∈ B

Θ ⊢k b : Val

Figure 7.22: eff kind system extension (extending fig. 7.13)

Value typing · · · Computation typing · · ·

typeconst(c) = b

Θ; Γ ⊢ c : b

typefunc(f) =
(
(b1, . . . , bn), (b′

1, . . . , b
′
m)
)

Θ; Γ ⊢E f :
 ∏

1≤i≤n

bi

→ F

 ∏
1≤j≤m

b′
j



Figure 7.23: eff type system extension (extending fig. 7.14)
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useM to provide interpretations for constants and built-in functions. Note that
the built-in functions are computations, but M merely specifies C morphisms,
and so we post-compose with return. Finally, we again believe the categorical
denotational semantics still satisfy theorems 7.2.17 and 7.2.18 of compositionality
and soundness respectively as our addition of constants and built-in functions is
straightforward.

Value types · · ·
⟦b⟧

θ
B ⟦b⟧B

Figure 7.24: eff categorical semantics extension for types (extending fig. 7.17)

Value terms · · ·
⟦c⟧θ (γ) B ⟦c⟧C

Computation terms · · ·
⟦f⟧

θ
(γ) B return ◦C ⟦f⟧F

Figure 7.25: eff categorical semantics extension for terms (extending fig. 7.18)

7.3 Logical Relations

Logical relations are a proof method by which one creates a relation-valued deno-
tation. In eff, we would assign each type a relation, and require all constructs in
the language to preserve the relations. However, because we will need to retain
more information at each type than mere sets capture, we require a generalization
of logical relations. We will achieve this through the use of fibrations.

We recall some terminology used for fibrations from [Jacobs, 1999]. Let
p : E → C be a functor. We will call the domain E the total category and the
codomain C the base category. An object X ∈ E such that pX = I ∈ C is said to
be above I; similarly, a morphism f of E with pf = u of C is said to be above u.
The subcategory EI of E consisting of the objects above I and morphisms above
idI is called the fibre category, or simply fibre, over I.

Definition 7.3.1 (Jacobs, 1999, Definition 1.1.3). Let p : E → C be a functor.
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1. A morphism f : X → Y in E is Cartesian over u : I → J in C if pf = u and
every g : Z → Y in E for which one has pg = u · w for some w : pZ → I,
uniquely determines an h : Z → X in E above w with f · h = g. We call
f : X → Y in the total category E Cartesian if it is Cartesian over its
underlying map pf in C.

2. The functor p : E → C is a fibration if for every Y ∈ E and u : I → pY in C,
there is a Cartesian morphism f : X → Y in E above u.

Our approach to logical relations is based on [Katsumata, 2013]. We recall
some of his observations in the case that p is faithful. In this case, each fibre
category EI is a preorder. The objects above I are like predicates on I, and EI

like the preorder of predicates on I. We also borrow the following notation for
when p is faithful. For X, Y ∈ E and f : pX → pY , define f : X →̇ Y to be
the proposition ∃ḟ : X → Y. p(ḟ) = f . When f : X →̇ Y holds, the morphism ḟ

existing above f is unique, and is called the witness of f : X →̇ Y .

Definition 7.3.2 (Partial order bifibration with fibrewise small products Kat-
sumata, 2013, Definition 3). A partial order bifibration with fibrewise small prod-
ucts is a faithful functor p : E → C such that:

Partial order: Each fibre is a partial order.

Fibration: p is a fibration. The property of being a fibration simplifies when p

is faithful. For any I ∈ C, Y ∈ E and f : I → pY , there exists X ∈ E above
I such that f : X →̇ Y and the following property holds: for any Z ∈ E
and g : pZ → I, f · g : Z →̇ Y implies g : Z →̇ X. This property and EI

being a partial order imply that X is unique; hence we write f ∗Y for X.
Furthermore, for any f : I → J in C, the mapping Y ∈ EJ 7→ f ∗Y ∈ EI

extends to a functor f ∗ : EJ → EI . We call it the inverse image functor
(along f).

Bi-: Each inverse image functor f ∗ has a left adjoint called the direct image
functor (along f), denoted by f∗.

Fibrewise small products: Each fibre category has small products and the
inverse image functor (necessarily) preserves them.

We now define the core construction for generalized logical relations.
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Definition 7.3.3 (Fibration for logical relations Katsumata, 2013, Definition 4).
A fibration for logical relations (FFLR) over a bi-CCC is a partial order bifibration
p : E → C with fibrewise small products such that E is a bi-CCC and p strictly
preserves the bi-cartesian closed (bi-CC) structure.

A simple example of a FFLR provides the basis for logical predicates.

Example 7.3.4 (Jacobs, 1999, Exercise 9.2.1, Katsumata, 2013, Example 2).
Define the category Pred as follows: the objects are pairs of sets (A,X) such
that A ⊆ X, and a map f : (A,X) → (B, Y ) is a function f : X → Y such that
f(A) ⊆ B. Pred is equivalent to the category of subobjects of Set. Define the
functor π : Pred → Set by π(A,X) B X and π(f) B f , clearly π is faithful.
Furthermore, the fibre PredX is isomorphic to the poset of subsets of X with
fibrewise products given by intersection and π is a bifibration via inverse and
direct image of sets. Thus, π is a partial order bifibration with fibrewise small
products.

By [Jacobs, 1999, Exercise 9.2.1], Pred has a bi-CC structure which is strictly
preserved by π, where the object structure is

1̇ = (1, 1) (A,X) ×̇ (B, Y ) = (A×B,X × Y )

0̇ = (0, 0) (A,X) +̇ (B, Y ) = (A+B,X + Y )

(A,X) ⇒̇ (B, Y ) = (
{
f : f(A) ⊆ B

}
, X ⇒ Y )

and the structure maps are the lifts from Set. In conclusion, π is a FFLR.

We will follow [Katsumata, 2013] in specifying a chosen representation of a
pullback of a fibration along a functor. Let p : E → C be a faithful functor and
F : B → C, then the pullback

F ∗E E

B C

p

F

F ∗p

q

consists of a category F ∗E and functors F ∗p and q described as follows. The
category F ∗E has objects which are pairs (X, I) where X ∈ E , I ∈ B such that
X is above FI, and a morphism from (X, I) to (Y, J) is a morphism f : I → J

such that Ff : X →̇ Y . The functor F ∗p sends (X, I) to I and sends f to itself.
Finally, the functor q sends (X, I) to I and sends f to its witness ḟ . We note
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that F ∗p is again faithful, and the fibre category of (F ∗E)I is isomorphic to EF I .
The pullback of a fibration for logical relations p gives a new fibration for logical
relations when F is a finite-product preserving functor.

Proposition 7.3.5 (Katsumata, 2013, Proposition 6). Let B, C be bi-CCCs,
p : E → C be a fibration for logical relations and F : B → C be a finite-product
preserving functor. Then F ∗p : F ∗E → B is a fibration for logical relations.

Sketch proof. For a map f : I → J in B, the functors f ∗ : (F ∗E)J → (F ∗E)I and
f∗ : (F ∗E)I → (F ∗E)J are given on objects by

f ∗(Y, J) B
(
(Ff)∗Y, J

)
f∗(X, I) B

(
(Ff)∗X, I

)
.

Each fibre (F ∗E)I is isomorphic to EF I and so is a partial order with small prod-
ucts. For any functor F : B → C between bi-CCCs, we have the following struc-
ture maps:

!F 1 : F1→ 1 lI,J B ⟨Fπ1, Fπ2⟩ : F (I × J)→ FI × FJ

?F 0 : 0→ F0 mI,J B [Fι1, F ι2] : FI + FJ → F (I + J)

and when F is product preserving, we also have

nI,J B λ
(
F (ev) · (lI⇒J,J)−1

)
: F (I ⇒ J)→ FI ⇒ FJ.

The object bi-CC structure is given by

1̄ = ((!F 1)∗1̇, 1) (X, I) ×̄ (Y, J) = (l∗(X ×̇ Y ), I × J)

0̄ = ((?F 0)∗0̇, 0) (X, I) +̄ (Y, J) = (m∗(X +̇ Y ), I + J)

(X, I) ⇒̄ (Y, J) = (n∗(X ⇒̇ Y ), I ⇒ J).

Example 7.3.6 (Katsumata, 2013, Example 3(2)). The binary product functor
F : Set × Set → Set, (X, Y ) 7→ X × Y is a product preserving functor. Let
us apply proposition 7.3.5 to F and π : Pred → Set, resulting in the following
pullback:

F ∗Pred Pred

Set× Set Set

π

F

F ∗π

q

and define BRel B F ∗Pred, for binary relations, and define p B F ∗π. Then
p : BRel → Set × Set is a FFLR. An object in BRel is equivalent to a pair
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(R, (X, Y )) where X, Y ∈ Set and R is a subset of X × Y , i.e. a relation, and a
map (f1, f2) : (R, (X1, X2))→ (S, (Y1, Y2)) is a pair of functions fi : Xi → Yi such
that (f1 × f2)(R) ⊆ S. We will use this representation.

We can use to proposition 7.3.5 to calculate the structure of p : BRel →
Set × Set. The calculations are straightforward, and so we only include the
product of objects as an example. For objects (R, (X1, X2)) and (S, (Y1, Y2)),
their product is({(

(x1, y1), (x2, y2)
) : (x1, x2) ∈ R, (y1, y2) ∈ S

}
, (X1 × Y1, X2 × Y2)

)
.

The FFLR π : Pred → Set is an instance of a more general construction.
For any category C, there is a category of arrows C→ which has morphisms of
C as objects and commutative squares as morphisms. There exists a functor
cod: C→ → C which maps a morphism f : A → B to its codomain B, and when
C has pullbacks cod is a fibration [Jacobs, 1999, Proposition 1.1.6]. Given a set
X and a subset A, there is a monomorphism i : A → X given by the inclusion
A ⊆ X. The class of monomorphisms M of Set defines a subcategory of Set→

and the codomain fibration restricts to M. Note that the fibres MI are not
partial orders, merely large preorders, but they are fibrewise equivalent to the
partial order (P(I),⊆). To generalize the above observations, we require the
notion of factorization systems.

Definition 7.3.7 (Borceux, 1994a, Definition 5.4.1). Consider two arrows f : A→
B and g : C → D in a category C. We say that f is orthogonal to g and we write
f ⊥ g when, given arbitrary morphisms u, v such that v · f = g · u there exists a
unique morphism w such that w · f = u and g · w = v.

Definition 7.3.8 (Borceux, 1994a, Definition 5.5.1). By factorization system on
a category C we mean a pair (E ,M) where both E andM are classes of morphisms
of C and

1. every isomorphism belongs to both E and M,

2. both E and M are closed under composition,

3. for all e ∈ E and m ∈M, e ⊥ m,

4. every morphism f ∈ C can be factored as f = m · e with e ∈ E and m ∈M.
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Not every factorization system induces an FFLR, and so we recall the follow-
ing definition from [Kammar and McDermott, 2018]. In the following, we also
consider the classes E andM as full subcategories of C→, the arrow category with
arrows of C as objects and commutative squares as morphisms. Recall that there
is a functor cod: C→ → C which maps each arrow to its codomain, and that it
restricts to subcategories of C→.

Definition 7.3.9 (Kammar and McDermott, 2018, Definition 4.4). Let C be a
bi-CCC. A factorization system (E ,M) over C is a factorization system for logical
relations when:

• C has pullbacks of M-morphisms;

• every morphism in M is a monomorphism;

• for every I ∈ C the cod-fibre MI has small products;

• M is closed under binary coproducts; and

• E is closed under binary products.

Lemma 7.3.10 (Kammar and McDermott, 2018, Lemma 4.5). Let (E ,M) be a
factorization system over a bi-CCC C. The codomain functor cod: M→ C is a
FFLR if and only if (E ,M) is a factorization system for logical relations.

Thus, we now have an additional way to create FFLRs. The above lemma
requires a small amount of finessing due to the same issue of the fibres of Pred
being large preorders. However, for our uses later we will only take M’s such
that the fibres MI are equivalent to partial orders.

A fibration for logical relations ensures that the bi-cartesian closed category
structure of of C is respected by when lifting to E . To create an eff model
in E , definition 7.2.23 also requires the existence of effect monads and enriched
universal construction of maps out of free algebras. We also must ensure that
the effect monads in E lie above the effect monads of C. The following definition
formalizes this requirement.

Definition 7.3.11 ([Katsumata, 2013]). Let C be a bi-CCC, T be a strong monad
over C and p : E → C be a fibration for logical relations. We formulate the concept
of a logical relation for T as a strong monad Ṫ = (Ṫ , η̇, µ̇, θ̇) over E such that

p(ṪX) = T (pX), pη̇X = ηpX , pµ̇X = µpX , pθ̇X,Y = θpX,pY .
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We call such Ṫ a lifting of T .

The denotational semantics of eff uses the objects of the category of algebras
Alg T of a strong monad T . Thus, given a lift Ṫ of T along an FFLR p : E → C,
we will need to consider Eilenberg-Moore category Alg Ṫ of Ṫ to define logical
relations for eff. Let Ḟ ⊣ U̇ be the standard adjunction for the category of
algebras Alg Ṫ . Consider the (non-commuting) diagram:

E Alg Ṫ

C Alg T

p

Ḟ

U̇

F

U

⊣
⊣

We want to define a functor Alg p : Alg Ṫ → Alg T such that p and Alg p are a
map of adjunctions. For an algebra

〈
X,α : ṪX → X

〉
, define (Alg p)(⟨X,α⟩) B

⟨pX, pα⟩, and for an algebra map f : ⟨X,α⟩ → ⟨Y, β⟩, define (Alg p)(f) B pf .

Proposition 7.3.12. Alg p : Alg Ṫ → Alg T is a functor and the pair p and
Alg p map Ḟ ⊣ U̇ to F ⊣ U . Furthermore, p strictly preserves the cartesian
structure of Alg Ṫ and strictly maps the functor X ⇒̇ − : Alg Ṫ → Alg Ṫ to
pX ⇒ − : Alg T → Alg T .

Proof. Straightforward calculation from the fact that p strictly preserves the
cartesian closed structure and Ṫ is a lift of T .

Even though we have proved that Alg p is a functor and not merely an
object assignment, we will not need this fact as the semantics of eff only uses
morphisms in C. Nonetheless, the denotational semantics of stacks in CBPV uses
EM algebras and so we record functorality.

An important aspect of the denotational semantics of eff is the existence and
use of effect monads. Let p : E → C be a FFLR and Σ = {opi : Ki → Ji|1 ≤ i ≤ n}
be an effect signature in C. Let Yi, Zi ∈ E be above Ji, Ki ∈ C respectively and
define Σ̇ B {opi : Zi → Yi|1 ≤ i ≤ n}. The effect functor FΣ = ∐

opi:Ki→Ji∈Σ Ki×
(Ji ⇒ −) has a counterpart

FΣ̇ B
∐̇

opi:Zi→Yi∈ΣZi ×̇ (Yi ⇒̇ −)

with pFΣ̇ = FΣ. The effect functor FΣ̇ appears in the denotation of handlers for
E-valued models of eff, and such a model requires the existence of the effect
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monad TΣ̇. It is also required TΣ̇ that be a lifting of TΣ. We will achieve this
using the following lifting construction due of [Kammar and McDermott, 2018].

Definition 7.3.13 ([Kammar and McDermott, 2018]). Let p : E → C be a FFLR
and T a strong monad on C. Let

{
αi : (Ji ⇒ T−)→ (Ki ⇒ T−)

}
1≤i≤n be a set

of algebraic operations of T and Yi, Zi ∈ E above Ji, Ki ∈ C respectively. For
each object X ∈ E , define RX as the set of all X ′ ∈ ET (pX) such that:

• The unit respects X ′, i.e. η : X →̇X ′.

• Each algebraic operation respects X ′ for the given lift, i.e. αi : (Yi ⇒̇X ′) →̇
(Zi ⇒̇X ′)

Define ṪX B ∧RX, i.e. ṪX is the least element of RX. This uniquely defines
a lifting Ṫ of T , which we call the free lifting with respect to {αi}1≤i≤n and
Yi, Zi ∈ E . Furthermore, each algebraic operation αi lifts to an algebraic operation
α̇i.

The fact that the free lifting is a monad lifting is folklore, and an explicit proof
can be found in Kammar’s thesis [Kammar, 2014] for the case of p : BRel →
Set×Set. His proofs are straightforwardly generalized to an arbitrary FFLR as
they make use of only properties and constructions common to all FFLRs.

Suppose that TΣ exists. We can then consider the free lifting of TΣ with
respect to the algebraic operations {αopi}1≤i≤n (defined in proposition 7.2.22)
and Yi, Zi ∈ E . Denote this lift by ṪΣ. We will show that ṪΣ is actually the free
algebra monad for FΣ̇.

Proposition 7.3.14. ṪΣ is the free algebra monad for FΣ̇ and so ṪΣ = TΣ̇.

Proof. We need to show that for any X ∈ E there is an FΣ̇-algebra structure on
ṪΣ and that it is the free such one. Fix an X ∈ E . As ṪΣ is the free lifting with
respect to {αopi}1≤i≤n, we have αopi : (Yi ⇒̇ ṪΣX) →̇ (Zi ⇒̇ ṪΣX) and thus, after
uncurrying, we hav αopi : Zi ×̇ (Yi ⇒̇ ṪΣX) →̇ ṪΣX. Define φ̇X to be the lift of

[ αopi ]opi∈Σ :
∐̇

opi∈ΣZi ×̇ (Yi ⇒̇ ṪΣX) →̇ ṪΣX

which equivalently has type FΣ̇ṪΣX →̇ ṪΣX. Observe that by proposition 7.2.22
pφ̇X = φpX where φpX : FΣTΣ(pX)→ TΣ(pX) is the free FΣ-algebra on pX. We
will show that φ̇X is the free FΣ̇-algebra.
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Let β : FΣ̇Y → Y be an FΣ̇-algebra and f : X → Y . Then pβ : FΣ(pY )→ pY

is an FΣ-algebra as p strictly preserves the bi-CCC structure and pf : pX → pY .
Thus, by freeness of φpX , we get a unique map g : TΣ(pX)→ pY such that

FΣTΣ(pX) TΣ(pX) pX

FΣ(pY ) pY
pβ

FΣg g
pf

ηpXφpX

commutes where η is the unit of TΣ. We will show that g lifts to g : ṪΣX →̇ Y .
Note that if g has such a lift, then the lift ġ is such that

FΣ̇ṪΣX ṪΣX X

FΣ̇Y Y
β

FΣ̇ġ ġ
f

η̇Xφ̇X

commutes by faithfulness of p. Furthermore, if another map h : ṪΣX → Y makes
the diagram commute, then ph = g by uniqueness of g and thus h = ġ by
faithfulness of p again. Therefore it suffices to show g lifts.

Define R B g∗(Y ). We will show the unit of TΣ respects R and each algebraic
operation αopi respects R. We begin by observing that g · ηpX = pf , and because
f : X → Y , (pf)∗(X) ≤ Y . Thus, ηpX ∗(X) ≤ g∗(Y ) = R and so the unit respects
R. The equation pβ · FΣ = g · φpX can be precomposed on each side with ιopi

for
any opi ∈ Σ given the structure of FΣ. This gives the equation

pβ · ιopi
·
(
idKi
× (Ji ⇒ g)

)
= g · αopi

and so

(g · αopi)∗(Zi ×̇ (Yi ⇒ R)) =
(
pβ · ιopi

·
(
idKi
× (Ji ⇒ g)

))
∗
(Zi ×̇ (Yi ⇒ R))

=
(
pβ · ιopi

)
∗
(Zi ×̇ (Yi ⇒ g∗(R)))

≤
(
β · ιopi

)
∗
(Zi ×̇ (Yi ⇒ Y ))

≤ Y

meaning αopi ∗(Zi ×̇ (Yi ⇒ R)) ≤ g∗(Y ) = R. Therefore αopi respects R. We have
shown R ∈ RX and so ṪΣX = ∧RX ≤ R = g∗(Y ) which means g : ṪΣX →̇Y as
needed.

Note that in the above proof we have pφ̇X = φpX . This means, given I, J ∈ C
and X, Y ∈ E with pX = I and pY = J , that the construction of free FΣ-algebras
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in C given by
Φ: C(FΣJ, J)× C(I, J)→ C(TΣI, J)

and of free FΣ̇-algebras E given by

Φ̇ : E(FΣ̇Y, Y )× E(X, Y )→ E(TΣ̇X, Y )

satisfy pΦ̇ = Φ. Furthermore, theorems 7.1.20 and 7.1.21 which show that Φ and
Φ̇ internalize to≫= and ≫̇= respectively, only made use of the bi-CCC structure
and the construction of free algebras. Therefore, we also have p(≫̇=) =≫=.

We can now prove that eff models can be lifted with respect to an FFLR
p : E → C.

Theorem 7.3.15. Let M = ⟨C,Θ, θ⟩ be an eff model, p : E → C be an FFLR,
and θ̇ an assignment from Θ to E objects such that pθ̇(α) = θ(α) for all α ∈ Θ.
Then Ṁ B ⟨E ,Θ, θ̇⟩ is an eff model. We say that such a model Ṁ is a lifting
of M along p.

Proof. By definition of an FFLR, E is a bi-CCC. Proposition 7.3.14 show that all
effect monads exist in E and that the universal construction of maps out of effect
monads enriches.

Next, we define what it means to lift an eff Π-model with respect to an
FFLR p : E → C.

Definition 7.3.16. Let Π = ⟨B,C, F, typeconst, typefunc, eval⟩ be an operational
signature andM = ⟨C,Θ, θ, ⟦−⟧B , ⟦−⟧C , ⟦−⟧F ⟩ an eff Π-model. A lifting ofM
along p is a Π-model Ṁ = ⟨E ,Θ, θ̇, ⟦−⟧Ḃ , ⟦−⟧Ċ , ⟦−⟧Ḟ ⟩ such that ⟨E ,Θ, θ̇⟩ is a
lifting of ⟨C,Θ, θ⟩, p ⟦b⟧Ḃ = ⟦b⟧B for all b ∈ B, p ⟦c⟧Ċ = ⟦c⟧C for all c ∈ C, and
p ⟦f⟧Ḟ = ⟦f⟧F for all f ∈ F .

We can now prove the the basic lemmas for logical relations, our main proof
method. We first show that the semantics of types lift.

Theorem 7.3.17 (Basic lemma for types). Let Π = ⟨B,C, F, typeconst, typefunc,

eval⟩ be an operational signature, M = ⟨C,Θ, θ, ⟦−⟧B , ⟦−⟧C , ⟦−⟧F ⟩ an eff Π-
model, p : E → C be an FFLR, and Ṁ = ⟨E ,Θ, θ̇, ⟦−⟧Ḃ , ⟦−⟧Ċ , ⟦−⟧Ḟ ⟩ a lifting of
M along p. Furthermore, let ⟦−⟧θ and ⟦−⟧θ̇ be the semantics induced by M and
Ṁ respectively, then for the syntactic class of:

• effect types Θ ⊢k E : Eff : the monad ⟦E⟧θ̇ is a lifting of ⟦E⟧θ along p;
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• value types Θ ⊢k A : Val: the object ⟦A⟧θ̇ is a lifting of ⟦A⟧θ along p;

• E-computation types Θ ⊢k C : CompE: the ⟦E⟧θ̇-algebra ⟦C⟧θ̇ is a lifting
of the ⟦E⟧θ-algebra ⟦C⟧θ along Alg p; and

• contexts Θ ⊢k Γ : Ctxt: the object ⟦Γ⟧θ̇ is a lifting of ⟦Γ⟧θ along p.

Proof. For effect types, proposition 7.3.14 proves that the effect monads induced
by Ṁ are lifts of those induced byM. Value types lift because p strictly preserves
the distributive structure as an FFLR and each base type is lifted. The definition
of monad lifts and proposition 7.3.14 shows that Alg p strictly preserves form-
ing products, exponential algebras, and free algebras, so computation types lift.
Finally, contexts are preserved for the same reason value types are.

Finally, we show that the semantics of value and computation terms lift.

Theorem 7.3.18 (Basic lemma for terms). Let Π = ⟨B,C, F, typeconst, typefunc,

eval⟩ be an operational signature, M = ⟨C,Θ, θ, ⟦−⟧B , ⟦−⟧C , ⟦−⟧F ⟩ an eff Π-
model, p : E → C be an FFLR, and Ṁ = ⟨E ,Θ, θ̇, ⟦−⟧Ḃ , ⟦−⟧Ċ , ⟦−⟧Ḟ ⟩ a lifting of
M along p. Furthermore, let ⟦−⟧θ and ⟦−⟧θ̇ be the semantics induced by M and
Ṁ respectively, then:

• if Θ; Γ ⊢ V : A then ⟦V ⟧θ : ⟦Γ⟧θ̇ →̇ ⟦A⟧θ̇; and

• if Θ; Γ ⊢E M : C then ⟦M⟧θ : ⟦Γ⟧θ̇ →̇
∣∣∣⟦C⟧θ̇∣∣∣.

Proof. By induction on judgments, the semantics induced by Ṁ lie over those
induced by M, i.e. p ⟦V ⟧θ̇ = ⟦V ⟧θ and p ⟦M⟧θ̇ = ⟦M⟧θ. We will prove the cases
for operations, handler definitions, and handling as examples.

Suppose we have the an operation judgement Θ; Γ ⊢E op V : FB for (op :
A→ B) ∈ E. The typing judgment for operations is

(op : A→ B) ∈ E Θ; Γ ⊢ V : A

Θ; Γ ⊢E op V : FB

By theorem 7.3.17 we have p ⟦E⟧θ̇ = ⟦E⟧θ, p ⟦A⟧θ̇ = ⟦A⟧θ, p ⟦B⟧θ̇ = ⟦B⟧θ, and
p ⟦Γ⟧θ̇ = ⟦Γ⟧θ. Likewise, we have p ⟦FB⟧θ̇ = p

(
FΣ̇ ⟦B⟧θ̇

)
= FΣ ⟦B⟧θ = ⟦FB⟧θ

where Σ̇ and Σ are the effect signatures induced by Ṁ and M respectively.
By induction we have ⟦V ⟧θ : ⟦Γ⟧θ̇ →̇ ⟦A⟧θ̇, meaning that p ⟦V ⟧θ̇ = ⟦V ⟧θ. The
denotation of an operation for M is given by

⟦op V ⟧θ (γ) B φ⟦B⟧θ

(
ιop

(〈
⟦V ⟧θ (γ), return

〉))
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and likewise for Ṁ. The functor p strictly preserves the bi-CCC structure mor-
phisms as well as free algebras, and the denotation of op V contains only these.
Thus, p ⟦op V ⟧θ̇ = ⟦op V ⟧θ.

Suppose we have a handler definition

Θ; Γ ⊢ {return x 7→M} ⊎ {opi p k 7→ Ni|1 ≤ i ≤ n} : A E⇒E′
C

and denote the term by H. The typing judgement for a handler definition is

Θ; Γ, x : A ⊢E′ M : C
for all 1 ≤ i ≤ n: Θ; Γ, p : Ai, k : UE′(Bi → C) ⊢E′ Ni : C

Θ; Γ ⊢ {return x 7→M} ⊎ {opi p k 7→ Ni|1 ≤ i ≤ n} : A E⇒E′
C

As before, by theorem 7.3.17 all types involved lift. By induction we have
p ⟦M⟧θ̇ = ⟦M⟧θ and p ⟦Ni⟧θ̇ = ⟦Ni⟧θ for all 1 ≤ i ≤ n. The denotation of a
handler definition for M is given by

⟦{return x 7→M} ⊎ {op p k 7→ Nop}op⟧θ (γ) B
〈
χ

(〈
⟦Nop⟧θ

〉
op

)
, ⟦M⟧θ

〉

where χ : ∏i (Ai ⇒ B) →
(
(∐i Ai)⇒ B

)
and likewise for Ṁ. The map χ is

constructed from the bi-CCC, and so are the currying operations (−). The functor
p strictly preserves the bi-CCC structure morphisms, and the denotation contains
only these. Thus, p ⟦H⟧θ̇ = ⟦H⟧θ.

Suppose we have a handler use Θ; Γ ⊢E′ handle M with H : C. The typing
judgement for a handler use is

Θ; Γ ⊢E M : FA Θ; Γ ⊢ H : A E⇒E′
C

Θ; Γ ⊢E′ handle M with H : C

As before, by theorem 7.3.17 all types involved lift. By induction we have
p ⟦M⟧θ̇ = ⟦M⟧θ and p ⟦H⟧θ̇ = ⟦H⟧θ. The denotation of a handler use for M
is given by

⟦handle M with H⟧θ (γ) B ⟦M⟧θ (γ)≫= ⟦H⟧θ (γ)

and likewise for Ṁ. The functor p strictly preserves the bi-CCC structure mor-
phisms and the internal free algebra construction maps, and the denotation con-
tains only these. Thus, p ⟦handle M with H⟧θ̇ = ⟦handle M with H⟧θ.





Chapter 8

Correctness of Selected Standard
AD Modes

Saffron

We can now use the mathematical tools we developed to prove correctness
of selected AD algorithms. Section 8.1 introduces the category of diffeological
spaces. Diffeological spaces are a generalization of Euclidean spaces and smooth
manifolds such that the result is suitable for being the denotational semantics
of our model effect and handler language. Furthermore, it is sufficiently rich
to allow for our generalized logical relations. We will provide two fibrations for
logical relations (FFLRs), a simpler one which we use in our proofs and richer
construction for possible future use. We then apply the diffeological semantics in
sections 8.2 and 8.3 to prove forward mode and continuation reverse mode correct
respectively.
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8.1 Diffeological spaces

The simplest form of differentiation is defined for real-valued functions f : R→ R.
A function f : R → R which has derivatives of all orders is known as smooth.
Differentiation can be extended to functions f : Rn → Rm between Euclidean
spaces Rn for n ∈ N. Again, f : Rn → Rm which has partial derivatives of all
orders is also known as smooth. Furthermore, note that it makes sense to consider
smooth maps f : U → V between open subsets U ∈ Rn and V ∈ Rm. Thus, we
define the following.

Definition 8.1.1 (Baez and Hoffnung, 2009, Definition 1). An open set is an
open subset of Rn for any n ∈ N. A function f : U → V between open sets is
called smooth if it has continuous derivatives of all orders.

We can then form a category with open subsets and smooth maps.

Definition 8.1.2. The category Eucl of Euclidean domains and smooth maps
has open subsets as objects and smooth maps as morphisms.

The category Eucl is cartesian with the standard set-theoretic cartesian struc-
ture. However, it does not have coproducts nor is it closed, and thus it is insuffi-
cient for our purposes. To remedy this, we will use diffeological spaces.

Definition 8.1.3 (Diffeological space). A diffeological space is a set X equipped
with, for each open set U , a collection of maps φ : U → X called plots denoted
PX

U , such that

• Every constant map U → X belongs to PX
U .

• If φ ∈ PX
U and f : V → U is a smooth map, then φ · f ∈ PX

V .

• Let φ : U → X and {Ui}i∈I be an open cover of U . If φ|Ui
∈ PX

Ui
for all

i ∈ I, then φ ∈ PX
U .

The collection of maps PX B
⋃

U PX
U is a diffeology on X.

Definition 8.1.4. Let X and Y be diffeological spaces. A function f : X → Y

is smooth if, for every plot φ : U → X of X , f · φ : U → Y is a plot of Y .

Note that the identity function is smooth and that the composition of smooth
maps is again smooth.
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Definition 8.1.5. The category Diff has diffeological spaces as objects and
smooth maps as morphisms.

We will draw facts about diffeological spaces from [Iglesias-Zemmour, 2013],
[Baez and Hoffnung, 2009], and [van der Schaaf, 2020]. There are two canonical
ways to assign an arbitrary set a diffeology.

Example 8.1.6 (Iglesias-Zemmour, 2013, Section 1.20). Let X be a set. We
will define the smallest diffeology possible for X, the discrete diffeology, and we
denote the resulting diffeological space as X◦. Define PX◦

U to be maps φ : U → X

satisfying the following condition: for all u ∈ U there exists an open neighbor-
hood V of u such that φ|V is constant. Thus, the plots are the locally constant
functions.

Example 8.1.7 (Iglesias-Zemmour, 2013, Section 1.21). Let X be a set. The
largest diffeology possible for X has plots φ : U → X given by all functions. We
denote this diffeological space by X• and it is called the coarse diffeology.

There is a forgetful functor U : Diff → Set given by forgetting the diffeology.
The constructions (−)◦ and (−)• each form fully faithful functors from Set to
Diff . Each functor is adjoint to U , specifically we have (−)◦ ⊣ U ⊣ (−)•. Thus,
U preserves limits and colimits.

Diffeological spaces generalize Euclidean spaces and likewise have products,
but they also have coproducts and exponentials.

Example 8.1.8 (Iglesias-Zemmour, 2013, Sections 1.9 and 1.16). Every open
set W is canonically a diffeological space by PW

U B Eucl(U,W ), i.e. all smooth
maps from U toW . Clearly constant maps are smooth, the composition of smooth
maps is smooth, and compatible smooth maps for an open cover can be glued
together. Furthermore, given two open sets W1,W2, we have Diff(W1,W2) =
Eucl(W1,W2). Thus, Eucl embeds fully and faithfully into Diff .

Example 8.1.9 (Iglesias-Zemmour, 2013, Section 1.39). Let {Xi}i∈I be a family
of diffeological spaces for some set I, we will define their coproduct. Define
X B

∐
i∈I Xi =

{
(i, x) : i ∈ I, x ∈ Xi

}
to be the coproduct of the underlying sets.

We will define the smallest diffeology on X such that each inclusion ι : Xi → X

is smooth. Define PX
U to be maps φ : U → X satisfying the following condition:

for every u ∈ U there exists i ∈ I and an open neighborhood V of u such that
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φ(V ) ⊆ {i} × Xi and φ|V ∈ PXi
V . Namely, the plots of X are maps which are

locally plots of some Xi. With this diffeology, X is the coproduct of {Xi}i∈I .

Example 8.1.10 (Iglesias-Zemmour, 2013, Section 1.55). Let {Xi}i∈I be a family
of diffeological spaces for some set I, we will define their product. Define X B∏

i∈I Xi to be the product of the underlying sets. We will define the largest
diffeology on X such that each in projection πi : X → Xi is smooth. Define PX

U

to be maps φ : U → X such that for each i ∈ I, πi ·φ ∈ PXi
U . With this diffeology,

X is the product of {Xi}i∈I .

Example 8.1.11. Let X and Y be diffeological spaces, we will define their
exponential object. Define X ⇒ Y B Diff(X, Y ). We will define a diffeol-
ogy on X ⇒ Y such that evaluation is smooth. Define PX⇒Y

U to be maps
φ : U → (X ⇒ Y ) such that λ(u, x).φ(u)(x) : U × X → Y is smooth, where
we take the product in Diff of U and X. With this diffeology, X ⇒ Y is an
exponential object.

With the structures defined, Diff is a bi-cartesian closed category. In fact,
Diff has a very rich structure which we will take advantage of to prove that
effect monads exist. One such aspect is that Diff is locally cartesian closed. A
category C is locally cartesian closed if for all objects X ∈ C the slice category
C/X is cartesian closed. Being locally cartesian closed is part of the definition
of being a quasitopos, see [Johnstone, 2002a, A2.6] for a textbook account. We
will not require any specific knowledge of quasitoposes besides it implying local
cartesian closedness, we will merely use Diff being a quasitopos as part of a
sufficient condition in a later theorem.

Theorem 8.1.12 (Baez and Hoffnung, 2009, Theorem 52). The category Diff is
a quasitopos and has all small limits and small colimits.

For the interested and knowledgeable reader, the above follows from Diff be-
ing a category of concrete sheaves. Specifically, Eucl has a Grothendieck topology
induced by the coverage defined by open covers in the standard topological sense.
With this coverage, Eucl is a concrete site and Diff is the category of concrete
sheaves on Eucl.

We will now construct the FFLR to be used in our correctness proofs. To do
so, we generate a sequence of three FFLRs: the first generalizing predicates to
Diff , the second generalizing binary relations to Diff , and the third capturing
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binary relations between smooth curves in Diff . The third will be the FFLR
used in our proofs.

Example 8.1.13. Let U : Diff → Set be the forgetful functor sending a diffe-
ological space to its underlying set; U is product preserving. Recall from exam-
ple 7.3.4 that π : Pred → Set is a FFLR. Thus, we can apply proposition 7.3.5
to the pullback

U∗Pred Pred

Diff Set

π

U

U∗π

q

and define PredDiff B U∗Pred, meaning predicates in diffeological spaces, and
p B U∗π. Then p : PredDiff → Diff is a FFLR. An object in PredDiff is
equivalent to a pair (A,X) where X ∈ Diff and A is a mere subset of X 1, and
a map f : (A,X)→ (B, Y ) is a smooth function f : X → Y such that f(A) ⊆ B.
We will use this representation.

We can use to proposition 7.3.5 to calculate the structure of p : PredDiff →
Diff . The maps !U1, ?U0, l, m, and n are all identity morphisms, and so the
bi-CC structure of PredDiff is essentially identical to that of Pred, and likewise
for the inverse and direct image functors.

The category PredDiff not seem to retain any diffeological information in
the predicate. In fact, each subset of a diffeological space inherits a diffeology,
the interested reader may see appendix B for more information.

Example 8.1.14. Let F : Diff ×Diff → Diff be defined as (X, Y ) 7→ X × Y .
Then F is product preserving as (X1× Y1)× (X2× Y2) ∼= (X1×X2)× (Y1× Y2).
Thus, we can apply proposition 7.3.5 to the pullback

F ∗PredDiff PredDiff

Diff ×Diff Diff

p

F

F ∗p

q

and define BRelDiff B F ∗PredDiff , for binary relations in diffeological spaces,
and p B F ∗p where which p will be clear by context. Then p : BRelDiff → Diff×
Diff is a FFLR. An object in BRelDiff is equivalent to a pair (R, (X, Y )) where
X, Y ∈ Diff and R is a subset of X × Y , and a map (f1, f2) : (R, (X1, X2)) →

1Technically, the objects are ((A, UX), X) where X ∈ Diff and (A, UX) ∈ Pred above UX.
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(S, (Y1, Y2)) is a pair of smooth functions fi : Xi → Yi such that (f1×f2)(R) ⊆ S.
We will use this representation.

We can use to proposition 7.3.5 to calculate the structure of p : BRelDiff →
Diff × Diff . The calculations are straightforward, and so we only include the
product of objects as an example. For objects (R, (X1, X2)) and (S, (Y1, Y2)),
their product is({(

(x1, y1), (x2, y2)
) : (x1, x2) ∈ R, (y1, y2) ∈ S

}
, (X1 × Y1, X2 × Y2)

)
.

Example 8.1.15. Consider the functor F B (R⇒ −)×(R⇒ −) : Diff×Diff →
Diff ×Diff . Then F is product preserving as (R ⇒ X1 × X2,R ⇒ Y1 × Y2) ∼=
((R ⇒ X1) × (R ⇒ X2), (R ⇒ Y1) × (R ⇒ Y2)). Thus, we can again apply
proposition 7.3.5 to the pullback

F ∗BRelDiff BRelDiff

Diff ×Diff Diff ×Diff

p

F

F ∗p

q

and define BRelDiffR B F ∗BRelDiff , for binary relations on curves in diffe-
ological spaces, and p B F ∗p where which p will be clear by context. Then
p : BRelDiffR → Diff ×Diff is a FFLR. An object in BRelDiffR is equivalent
to a pair (R, (X, Y )) where X, Y ∈ Diff and R is a subset of (R⇒ X)×(R⇒ Y ),
and a map (f1, f2) : (R, (X1, X2)) → (S, (Y1, Y2)) is a pair of smooth functions
fi : Xi → Yi such that ((f1 · −) × (f2 · −))(R) ⊆ S. We will use this representa-
tion.

We will calculate the object structure of p : BRelDiffR → Diff ×Diff using
proposition 7.3.5. The fibre BRelDiffR

(X1,X2) consists of relations on (R ⇒
X1)×(R⇒ X2) with the partial order given by set inclusion and fibered products
by intersection. Let (f1, f2) : (X1, X2) → (Y1, Y2), then the inverse and direct
image functors are

(f1, f2)∗ (S, (Y1, Y2)
)
B
({

(γ1, γ2) : (f1 · γ1, f2 · γ2) ∈ S
}
, (X1, X2)

)
(f1, f2)∗

(
R, (X1, X2)

)
B
({

(f1 · γ1, f2 · γ2) : (γ1, γ2) ∈ R
}
, (Y1, Y2)

)
on objects. The terminal object is

(
(R⇒ 1)× (R⇒ 1), (1, 1)

)
and the initial is(

(R⇒ 0)× (R⇒ 0) = ∅, (0, 0)
)
. The product of (R, (X1, X2)) and (S, (Y1, Y2)) is({

(γ, γ′) : (π1 · γ, π1 · γ′) ∈ R, (π2 · γ, π2 · γ′) ∈ S
}
, (X1 × Y1, X2 × Y2)

)
,
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their coproduct is({
(ι1 · γ, ι1 · γ′) : (γ, γ′) ∈ R

}
∪
{
(ι2 · γ, ι2 · γ′) : (γ, γ′) ∈ S

}
, (X1 + Y1, X2 + Y2)

)
.

For f ∈ R ⇒ (X ⇒ Y ), γ ∈ R ⇒ X, define f ⊛ γ ∈ R ⇒ Y by (f ⊛ γ)(x) B
f(x)(γ(x)). Then the exponential (R, (X1, X2)) ⇒̇ (S, (Y1, Y2)) is

({
(f1, f2) : ∀(γ1, γ2) ∈ R, (f1 ⊛ γ1, f2 ⊛ γ2) ∈ S

}
, (X1 ⇒ Y1, X2 ⇒ Y2)

)
.

The FFLR p : BRelDiffR → Diff ×Diff is the fibration we will use in our
correctness proofs based on logical relations. Recall that our formulation of logical
relations requires an eff model ⟨Diff×Diff ,Θ, θ⟩. We will use proposition 7.2.25,
and so must prove that all functors of the form B ⇒ − preserve λB-chains for
some ordinal λB dependent on B. In fact, we will prove something stronger, that
B ⇒ − has rank.

Definition 8.1.16 (Borceux, 1994b, Definition 5.5.1). A functor F : C → D has
rank λ, for some regular cardinal λ, when F preserves λ-filtered colimits. It has
rank when it has rank λ for some regular cardinal λ.

We recall the definition of a generating set and a proposition about them.

Definition 8.1.17 (Borceux, 1994a, Definition 4.5.1). Let C be a category. A
family {Gi}i∈I of objects of C is called a family of generators when, given any
two parallel morphisms u, v : A → B in C, if for all i ∈ I and for all g : Gi → A

we have u · g = v · g, then u = v. When the family consists of a single element G,
then we say that G is a generator of C.

Proposition 8.1.18 (Borceux, 1994a, Corollary 4.5.9). Let C be a category and
G ∈ C. The following conditions are equivalent:

• G is a generator;

• the functor C(G,−) : C → Set is faithful.

We now take advantage of the following theorem.

Theorem 8.1.19 (Johnstone, 2002b, Theorem C2.2.13). For a category C the
following are equivalent:

• C is a locally small, cocomplete quasitopos with a generating set.
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• C is locally presentable, locally cartesian closed, and quasi-effective.

The category Diff is generated by the singleton space 1 as Diff(1,−) is faithful
(because maps in Diff are just Set maps with extra properties). Furthermore,
it is locally small, and by theorem 8.1.12 it is a cocomplete quasitopos. Thus,
we conclude by the above that Diff is locally presentable. We will only use local
presentability as a premise in the application of the next theorem, and so we do
not expand on it here.

Theorem 8.1.20 (Borceux, 1994b, Theorem 5.5.7). Let F : C → D be a functor
between two locally presentable categories. The following conditions are equiva-
lent:

• F has a left adjoint;

• F has rank and preserves small limits.

For any diffeological space B, the endofunctor B ⇒ − has rank because it
has a left adjoint B ×−. We can now conclude the following.

Proposition 8.1.21. For any B ∈ Diff × Diff , the functor B ⇒ − preserves
λB-chains for some ordinal λB dependent on B.

Proof. By definition of exponentials in Diff × Diff , (B ⇒ −) = (B1 ⇒ −) ×
(B2 ⇒ −) where B B (B1, B2). Each functor Bi ⇒ − has rank, and so preserves
λBi

-filtered colimits for some regular cardinal λBi
. Define λB B max(λB1 , λB2),

and so each Bi ⇒ − preserve λB-filtered colimits. Colimits are computed compo-
nentwise in product categories, so B ⇒ − preserves λB-filtered colimits. Clearly
λB-chains are λB-filtered colimits, and so we are done.

Corollary 8.1.22. All triples of the form ⟨Diff ,Θ, θ⟩ and ⟨Diff×Diff ,Θ, θ⟩ are
eff models.

We know have all we need for correctness, and readers may continue to sec-
tion 8.2 if desired. The rest of this chapter focusses on the more general FFLR.
For our second factorization system, we must introduce the notion of a strong
epimorphism.

Definition 8.1.23 (Baez and Hoffnung, 2009, Definition 35). In any category,
an epimorphism p : E → B is strong if given any monomorphism i : A→ X and



8.1. Diffeological spaces 153

morphisms f, g making the outer square here commute:

E A

B X

f

i

g

p t

then there exists a unique t : B → A making the whole diagram commute.

In Diff , there is an alternate characterization of strong epimorphisms in terms
of quotient spaces which is convenient to work with.

Definition 8.1.24. We say a smooth map p : E → B makes B a quotient space
of E if for every plot φ ∈ PB

U , there exists an open cover {Ui}i∈I of U and a
collection of plots

{
φi : φi ∈ PE

Ui

}
such that φ|Ui

= p · φi for all i ∈ I.

Proposition 8.1.25 (Baez and Hoffnung, 2009, Proposition 37). A smooth map
p : E → B is a strong epimorphism if and only if p makes B a quotient space of
E.

We will see that strong epimorphisms in Diff have the additional property of
being regular.

Definition 8.1.26 (Borceux, 1994a, Definition 4.3.1). An epimorphism is called
regular when it is the coequalizer of a pair of arrows.

Regular epimorphisms are required to define regular categories. Regular cate-
gories are a setting in which the calculus of relations can be carried out. However,
we shall only use them to help generate a factorization system involving strong
epimorphisms. Furthermore, the concept of kernel pair in the definition below
will not be used, so we do not recall their definition.

Definition 8.1.27 (Borceux, 1994b, Definition 2.1.1). A category C is regular
when it satisfies the following conditions:

1. every arrow has a kernel pair;

2. every kernel pair has a coequalizer; and

3. the pullback of a regular epimorphism along any morphism exists and is
again a regular epimorphism.

We then note the following three facts.
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Proposition 8.1.28 (Borceux, 1994b, Proposition 2.1.4). In a regular category,
a morphism is a regular epimorphism if and only if it is a strong epimorphism.

Lemma 8.1.29 (Jacobs, 1999, Lemma 4.4.6). In a regular category, (regular
epimorphisms, monomorphisms) is a factorization system.2

Lemma 8.1.30 (Johnstone, 2002a, Lemma 1.5.13). Let C be a locally cartesian
closed category. If C has coequalizers, then it is regular.

Thus, we can can conclude the subsequent corollary.

Corollary 8.1.31. Diff is a regular category, and so has (strong epimorphisms,
monomorphisms) as a factorization system.

We now prove the additional properties required to be a factorization system
for logical relations.

Theorem 8.1.32. The factorization system (strong epimorphisms, monomor-
phisms) on Diff is a factorization system for logical relations.

Proof. We must prove the five properties of definition 7.3.9. Let Mono denote
the class of monomorphisms in Diff and SEpi denote the class of strong epimor-
phisms in Diff , both of which can be viewed as a full subcategory of Diff→ the
arrow category of Diff .

Diff has pullbacks monomorphisms: This is trivial as Diff is complete.
Every monomorphism is a monomorphism: Trivially true.
For every Y ∈ Diff the fibre MonoY has small products: Fix an object

Y ∈ Diff . The objects in MonoY are the objects of Mono over Y via cod,
i.e. monomorphisms m : X → Y . For monomorphisms m1,m2 : Xi → Y , a map
f : m1 → m2 in Mono is a morphism f : X1 → X2 such that m1 = m2 · f .
Furthermore, in a full subcategory of an arrow category, which Mono is, the
product of objects is given by their pullback if it belongs to the subcategory.
Thus the pullback of a set of monomorphisms exists in Diff as it is complete,
and the pullback of monomorphisms is a monomorphism, and so we are done.

Mono is closed under binary coproducts: Let mi : Xi → Yi for i = 1, 2 be
monomorphisms. As objects in Diff→, their coproduct is m1 + m2 : X1 + X2 →

2This lemma has been reduced to the relevant statements.
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Y1 + Y2 and the commutative square

Xi X1 +X2

Yi Y1 + Y2

mi

ιi

ιi

m1+m2

gives the coprojections mi → m1 + m2. Thus, we need to show that m1 + m2 is
a monomorphism. Indeed, the map m1 + m2 is smooth and is injective on the
underlying sets, and thus is a monomorphism in Diff .

SEpi is closed under binary products: Let ei : Xi → Yi be strong epimor-
phisms. As objects in Diff→, their product is e1×e2 with projections analogously
to the coproduct case. We must show e1 × e2 is an strong epimorphism. We al-
ready know e1 × e2 is smooth, and it is clearly surjective on the underlying sets,
and so it is an epimorphism.

We will show that e1 × e2 makes Y1 × Y2 into a quotient space of X1 × X2.
Let φ ∈ PY1×Y2

U . Then there exist φ1 ∈ PY1
U and φ2 ∈ PY2

U such that φ =
φ1 × φ2. Furthermore, because p1 is strong, there exists an open cover

{
Ui,1

}
i∈I

and collections of plots
{
φi,1 : φ1,i ∈ PX1

U1,i

}
such that φ1|U1,i

= p1 · φ1,i for all
i ∈ I. Likewise, there exists an open cover

{
U2,j

}
j∈J

and collections of plots{
φ2,j : φ2,j ∈ PE2

U2,j

}
such that φ2|U2,j

= p2 · φ2,j for all j ∈ J . Define Vi,j B

U1,i ∩ U2,j, then
{
Vi,j

}
i∈I,j∈J

is an open cover of U . Next, define φi,j B φ1
i|Vi,j
×

φ2
j|Vi,j

∈ PX1×X2
Vi,j

. Then we see that

(p1 × p2) · φi,j =
(
p1 ·

(
φ1,i|Vi,j

))
×
(
p2 ·

(
φ2,j|Vi,j

))
=
((
p1 · φ1,i

)
|Vi,j

)
×
((
p2 · φ2,j

)
|Vi,j

)
=
((
φ1|U1,i

)
|Vi,j

)
×
((
φ2|U2,j

)
|Vi,j

)
= φ|Vi,j

and so e1 × e2 makes Y1 × Y2 into a quotient space of X1 ×X2.

We can now combine lemma 7.3.10 and theorem 8.1.32.

Corollary 8.1.33. Let Mono be the full subcategory of the arrow category of
Diff . The restricted codomain fibration cod: Mono→ Diff is a FFLR.

It is important to note that the fibres of cod: Mono→ Diff are not posets,
but are in fact large preorders. However, Diff is well-powered, meaning that
it has a small poset of subobjects, i.e. equivalence classes of monomorphisms.
Furthermore, one can create a fiberwise equivalence between cod: Mono→ Diff
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and cod′ : Sub→ Diff where Sub is a fiberwise replacement of the large preorder
of monomorphisms with the induced poset of subobjects. We will not delve into
this construction because this FFLR is not used in the construction of the FFLR
used in our correctness proofs.

We can perform the same sequences of steps on p : Sub → Diff as we did
to p : PredDiff → Diff to obtain an analogous FFLR to p : BRelDiffR →
Diff × Diff . The new FFLR would be similar, but would allow an arbitrary
diffeology on the relation between curves.

8.2 Correctness of Forward Mode

We can now prove forward mode correct. We begin by defining the data needed
for a few operational signatures. Fix N ∈ N, N > 2, and a collection of subspaces
Opn ⊆

(
RRn

)
◦

for 0 ≤ n < N such that 0 ∈ Op0 and +, ∗ ∈ Op2 which are
closed under differentiation as a family. The family {Opn}0≤n<N specifies what
basic mathematical operations are allowed. We will also use Opn to denote a base
type in eff. Furthermore, we will require the real numbers R as a diffeological
space and will also use R to denote a base type in eff. Thus, define our set
of base types as B B {Opn}0≤n≤N ∪ {R}. We define our constants as C B
R∪⋃n Opn. For built-in functions, we require a way to evaluate smooth functions
and determine their derivatives. We need N functions evaln : Opn × Rn → R to
evaluate functions for 0 ≤ n < N and (N − 1)N/2 functions ∂n

m : Opn → Opn

for 1 ≤ m ≤ n < N to calculate the partial derivative of the mth argument.
Define F B {evaln}0≤n≤N ∪{∂n

m}1≤m≤n<N . The functions typesconst and typesfunc

are given the evident definitions. Finally, the function eval is defined such that
each evaln and ∂n

m computes the correct mathematical result. We then define the
following operational signatures:

Operations only: ΠOp B ⟨B \{R} , C \R, ∅, typesconst|C\R, ∅, ∅⟩ where the only
base types and constants are operations and there are no built-in functions;

Base types, no real constants: ΠB B ⟨B,C \ R, ∅, typesconst|C\R, ∅, ∅⟩ where
there are all base types, but only constants for operations, and there are no
built-in functions; and

Full: ΠF B ⟨B,C, F, typesconst, typesfunc, eval⟩ of all data.
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Let R be a type variable, we define the effect

ER B
{
apR

n : Opn ×Rn → R : 0 ≤ n ≤ N
}

for smooth functions, where apR
n represents applying an n-ary function to n argu-

ments. We will focus on differentiating terms of the form R; x : R ⊢ER M : FR
which use ΠOp . The type variable R corresponds to the type variables found
in our definition of smooth effects in chapter 4. For evaluation, we instantiated
it to floats to model the real numbers. For forward mode in section 4.1, we in-
stantiated the type variable with a pair of numbers, one for the original value an
one for the derivative. Thus, we will do the same here. By corollary 8.1.22, the
tuple ⟨Diff×Diff , {R} ,

{
R 7→ (R,R2)

}
⟩ is an eff model. The mapping of R to

(R,R2) models the type variable instantiation for evaluation in the first compo-
nent and for forward mode in the second component. Moreover, by interpreting
the base types Opn and its constants using (Opn,Opn) , we obtain a ΠOp-model,
which we denote by ⟦−⟧.

We require an FFLR to apply logical relations to ⟦−⟧, for which we use
p : BRelDiffR → Diff × Diff . Additionally, we must choose lifts of ⟦Opn⟧ =
(Opn,Opn) and ⟦R⟧ = (R,R2). For ⟦Opn⟧, we choose equality and denote
it by Op=

n . With this choice, the constants of type Opn lift. For ⟦R⟧, we
choose the set

{
(f, ⟨f,∇f⟩) : f ∈ R⇒ R

}
C RDual. The set RDual is a relation

between smooth curves f : R → R and the same curve f paired with its deriva-
tive ⟨f,∇f⟩ : R→ R2. We can thus apply the basic lemma of logical relations to
R; x : R ⊢ER M : FR.

Proposition 8.2.1. Given a term R; x : R ⊢ER M : FR using the operational
signature ΠOp, ⟦M⟧ lifts to

⟦M⟧ : RDual →̇ Ṫ⟦ER⟧RDual.

For our main theorem, we now wish to show that our forward mode calculates
derivatives. To do so, we must factorize our interpretation ⟦−⟧. We will define
two models into Diff based on different instantiations of R. Define the effect

ER B
{
apR

n : Opn × Rn → R : 0 ≤ n ≤ N
}

and note that apR
n and apR

n are syntactically distinct operations. Next, we define
a functorial macro MR

R on programs not containing the operations of ER in their
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effects. By macro, we want to emphasize that the operation MR
R acts on program

syntax, and by functorial we want to emphasize that it is structurally recursive.
The operation MR

R will essentially replace all occurrences of R by R. For types,
MR

R(R) B R, the identity on other base types, and homomorphically on type
formers. Define MR

R

(
{opi : A→ B}i

)
B

{
MR

R(opi) : MR
R(A)→MR

R(B)
}

i
for

effects where MR
R(apR

n ) B apR
n and MR

R(opi) B opi for opi /∈ ER. For terms,
MR

R(apR
n ) B apR

n on operations and handler cases, the identity on other base
terms, and homomorphically on term formers. For contexts,

(
MR

R (Γ)
)

(x) B
MR

R
(
Γ(x)

)
for all x ∈ Dom (Γ). The above description is sufficient as the only

base terms with types involving R are variables and apR
n . We will also define

ER2
B
{

apR2

n : Opn ×
(
R2
)n
→ R2 : 0 ≤ n ≤ N

}

and let the analogous macro be denoted by MR2
R .

Proposition 8.2.2. The macros MR
R and MR2

R respect kinding, typing, substitu-
tion, and contextual equivalence for programs not including operations from ER

and ER2 respectively.

Proof. By induction on syntax, judgments, and program contexts. Note that
MR

R is almost type substitution, except that apR
n is replaced by apR

n , which is
syntactically distinct. The restriction of not including operations from ER ensures
the well-kindedness of effects. Likewise for MR2

R .

Next, we define a Diff-valued ΠB-model for terms with no type variables.
By corollary 8.1.22, the tuple ⟨Diff , ∅, ∅⟩ is an eff model. Interpreting R as
a diffeological space and the base types Opn and its constants using the corre-
sponding diffeological spaces, we obtain a ΠOp-model, which we denote by ⟦−⟧R.
By proposition 8.2.2, ⟦MR

R(−)⟧R is a valid ΠOp-model where we have one type

variable R which is interpreted as R, and likewise for ⟦MR2
R (−)⟧R but for R2.

Then on the eff-fragment which contains operations from neither ER nor ER2 ,
we see ⟦−⟧ = ⟦MR

R(−)⟧R × ⟦MR2
R (−)⟧R.

We can also extend ⟦−⟧R to a ΠF -model. Real number constants are in-
terpreted as elements of R. For built-in functions, we have two families. The
function evaln : Opn×Rn → R is interpreted using the smooth inclusions Opn ⊆(
RRn

)
◦
↪→ RRn and the evaluation morphism given by the CCC structure. The

function ∂n
m : Opn → Opn is interpreted as partial differentiation. Clearly these
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interpretations satisfy the operational requirements imposed by ΠF . We also
denote this ΠF -model by ⟦−⟧R as the previous is merely a restriction.

Recall that the handler for evaluation is

Heval = {return x 7→ return x

apR
n (f, v) k 7→ k! (evaln (f, v))

}

where we have only shown the nth handling clause for brevity. Additionally, recall
that the notation for turning a value k of type UEC into a computation of type
C is k!. For forward mode, we again only show the nth clause for brevity, and we
use an unspecified but trivial term unzip which unzips tuples. Finally, we use an
n-ary sum in place of addition, and all said the final definition is

Hforw = {return x 7→ return x

apR2
n (f, v) k 7→ case unzip! v of
(w, (dw1, . . . , dwn))→ k! (apR

n (f, w),

r1 ← apR
2 (∗, (apR

n (∂n
1 f, w), dw1));

· · ·
rn ← apR

2 (∗, (apR
n (∂n

n f, w), dwn));
apR

n (sum, (r1, . . . , rn))

)

}

where we have used some syntactic sugar in each ri binding. Specifically we wrote
the ill-formed

ri ← apR
2 (∗, (apR

n (∂n
i f, w), dwi)); . . .

as shorthand for

x ← apR
n (∂n

i f, w); ri ← apR
2 (∗, (x, dwi)); . . .

for fresh x , which is well-formed. Let R; x : R ⊢ER M : FR be such that M is
in the domain of our macros. Define the following morphisms

β1 B ⟦; y : R ⊢∅ handle (λx .MR
R(M)) y with Heval : F (R)⟧R

β2 B

LPPPPPPPPN

; y : R2 ⊢∅

handle
handle (λx.MR2

R (M)) y with Hforw

with Heval

: F (R2)

MQQQQQQQQO

R

β B β1 × β2
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using the ΠF -model ⟦−⟧R. The type of β, as a morphism in Diff ×Diff , is

β : (R,R2)→ (R,R2)

as the interpretation of F at the effect ∅ is the identity monad. We will show
that β lifts along p using the definition of the free algebraic lift, i.e. that

β : RDual →̇RDual.

Let us begin calculating β1 in the internal language

β1 = λy. ⟦MR
R(M)⟧R (y)≫=Heval

and β2

β2 = λy.

(
⟦MR2

R (M)⟧R (y)≫=Heval

)
≫=Hforw.

Proposition 8.2.1 showed by the basic lemma for logical relations that ⟦M⟧ =
⟦MR

R(M)⟧R × ⟦MR2
R (M)⟧R lifts. Thus, defining

α1 B λx.x≫=Heval

α2 B λx.(x≫=Hforw)≫=Heval

α B α1 × α2

it is sufficient to show α lifts. Note that

α :
(
TERR, TER2R2

)
→
(
R,R2

)
and so, where Ṫ is the lift of TER × TER2 , we must prove

α : ṪRDual →̇RDual.

Define X B α∗RDual. Then

α∗ηT ∗RDual = (α.ηT )∗RDual = RDual

because α.ηT = ηT∅ = id by definition of the return clause definitions of each
handler. Therefore

ηT ∗RDual ≤ α∗RDual = X

and so ηT respects X at RDual.
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Next, we want to show

apR
n × apR2

n :
(
Op=

n ×̇RDual
n
)
×̇XRDual →̇X.

Let us begin by calculating α.
(
apR

n × apR2
n

)
. Observe that

⟦; f : Opn, v : Rn ⊢ER apR
n (f, v) : FR⟧R = λx.apR

n

(
x, ηT

ER

)

and that

⟦; f : Opn, v : Rn, k : UER(R→ FR) ⊢ER x← apR
n (f, v); k! x : FR⟧R

= λfvk.apR
n

(
(f, v), ηT

ER

)
≫=ERk

= λfvk.apR
n

(
(f, v), ηT

ER≫=ERk
)

= λfvk.apR
n

(
(f, v), k

)
= apR

n

and similarly for apR2
n . Furthermore, for Γ1 B f : Opn, v : Rn, k : UER(R→ FR)

and Γ2 B f : Opn, v : (R2)n, k : UER2 (R2 → F (R2)), we see

α1.apR
n =

LPPPPPPPPPPPN

; Γ1 ⊢∅

handle
x← apR

n (f, v);
k! x

with Heval

: F (R)

MQQQQQQQQQQQO

R

α2.apR2
n =

LPPPPPPPPPPPPPPPPPN

; Γ2 ⊢∅

handle
handle
x← apR2

n (f, v);
k! x

with Hforw

with Heval

: F (R2)

MQQQQQQQQQQQQQQQQQO

R

and after a few reductions via the operational semantics, which is valid thanks
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to the soundness of our denotational semantics, we get

α1.apR
n =

LPPPPPPPPN

; Γ1 ⊢∅

handle
k! (evaln (f, v))

with Heval

: F (R)

MQQQQQQQQO

R

α2.apR2
n =

LPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPN

; Γ2 ⊢∅

handle
handle

case unzip! v of
(w, (dw1, . . . , dwn))→ k! (apR

n (f, w),

r1 ← apR
2 (∗, (apR

n (∂n
1 f, w), dw1));

· · ·
rn ← apR

2 (∗, (apR
n (∂n

n f, w), dwn));
apR

n (sum, (r1, . . . , rn))

)

with Hforw

with Heval

: F (R2)

MQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQO

R

.

Thus,

α1.apR
n = α1. ⟦; Γ1 ⊢ER k! (evaln (f, v)) : F (R)⟧R

α2.apR2
n = α2.

LPPPPPPPPPPPPPPPPPPPPPPPPN

; Γ2 ⊢ER2

case unzip! v of
(w, (dw1, . . . , dwn))→ k! (evaln (f, w),

evaln (sum, (

eval2 (∗, (evaln (∂n
1 f, w), dw1)),

. . . ,

eval2 (∗, (evaln (∂n
n f, w), dwn))

))

)

: F (R2)

MQQQQQQQQQQQQQQQQQQQQQQQQO

R

.

Call the denotation of the two terms γ1 and γ2 respectively. By short calculation,
we see that

γ1 × γ2 :
(
Op=

n ×̇RDual
n
)
×̇XRDual →̇X.

By definition, α : X →̇RDual, and so(
α.
(
apR

n × apR2
n

))
∗

((
Op=

n ×̇RDual
n
)
×̇XRDual

)
=
(
α.(γ1 × γ2)

)
∗

((
Op=

n ×̇RDual
n
)
×̇XRDual

)
≤ RDual
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meaning
(
apR

n × apR2
n

)
∗

((
Op=

n ×̇RDual
n
)
×̇XRDual

)
≤ α∗RDual = X

and so apR
n × apR2

n respects X at RDual.
We have proven that X ∈ R(RDual) and so ṪRDual ≤ X giving

α∗ṪRDual ≤ α∗X = α∗α
∗RDual ≤ RDual

which means α : ṪRDual →̇ RDual as desired. Thus, we have proven the following
theorem.

Theorem 8.2.3. Let R; x : R ⊢ER M : FR be an eff term not using operations
from ER or ER2 which uses the signature ΠOp. Define the following morphisms

β1 B ⟦; y : R ⊢∅ handle (λx .MR
R(M)) y with Heval : F (R)⟧R

β2 B

LPPPPPPPPN

; y : R2 ⊢∅

handle
handle (λx.MR2

R (M)) y with Hforw

with Heval

: F (R2)

MQQQQQQQQO

R

β B β1 × β2

using the ΠF -model ⟦−⟧R. Then β : RDual →̇RDual, i.e. for any smooth f : R→ R
we have

β ·
(
f × ⟨f,∇f⟩

)
= g × ⟨g,∇g⟩

for some smooth g : R→ R.

Let us apply theorem 8.2.3 for f = id : R → R, noting that ∇id = λx.1.
Thus, we have

β ·
(
f × ⟨f,∇f⟩

)
= (β1 × β2) ·

(
id × ⟨id, λx.1⟩

)
= β1 ×

(
β2 · ⟨id, λx.1⟩

)
and thus we see g = β1, meaning

β2 · ⟨id, λx.1⟩ = ⟨β1,∇β1⟩

and finally that for any x ∈ R we have

β2(x, 1) =
(
β1(x),∇β1(x)

)
.

Recall that our helper function for forward mode is
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d : {( Paired X) -> [ Smooth X, Smooth ( Paired X)] ( Paired X)}

-> X -> [ Smooth X] X

d f x = dv (diff (f ( paired x (<Smooth > (c 1.0)))))

where diff is our forward mode handler. Therefore, we are evaluating the function
f at (x, 1), which shows that d calculates the derivative of f when computed under
the evaluation handler.

8.3 Correctness of Continuation Reverse Mode

We can now also prove correctness of continuation reverse mode, following a
similar structure to the proof of forward mode. We will again use the effects
ER and ER, as well as the operational signatures ΠOp , ΠB, and ΠF . Define
the type BP B UER(R → FR), the type of back propagators. We will focus
on differentiating terms of the form R; x : R ⊢ER M : FR which use ΠOp . As
with forward mode, we will instantiate R based on the types we used in the
implementation of continuation reverse mode in section 4.3, namely of a value
paired with a backpropagator which computes the derivative. By corollary 8.1.22,
the tuple ⟨Diff×Diff , {R} ,

{
R 7→ (R,R×BP )

}
⟩ is an eff model. Moreover, by

interpreting the base types Opn and its constants using (Opn,Opn) , we obtain
a ΠOp-model, which we denote by ⟦−⟧.

We require an FFLR to apply logical relations to ⟦−⟧, for which we use
p : BRelDiffR → Diff × Diff . Additionally, we must choose lifts of ⟦Opn⟧ =
(Opn,Opn) and ⟦R⟧ = (R,R × BP ). Here, we write BP to mean the object
R ⇒ TERR, which is the type BP where the type R is interpreted as its diffeo-
logical space. For ⟦Opn⟧, we choose equality and denote it by Op=

n . With this
choice, the constants of type Opn lift. For ⟦R⟧, we choose
{(
f, (f, k)

) : f ∈ R⇒ R, k ∈ R⇒ (R⇒ TERR) ,
(
k(x)(r)≫=Heval

)
= r∇f(x)

}
which we denote RRev. The relation RRev pairs a smooth function with a contin-
uation which calculates its derivative multiplied by a scalar. We can thus apply
the basic lemma of logical relations to R; x : R ⊢ER M : FR.

Proposition 8.3.1. Given a term R; x : R ⊢ER M : FR using the operational
signature ΠOp, ⟦M⟧ lifts to

⟦M⟧ : RRev →̇ Ṫ⟦ER⟧RRev.
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Define the effect

ER×BP B
{
apR×BP

n : Opn × (R×BP )n → R×BP : 0 ≤ n ≤ N
}
.

and define the macro MR×BP
R as before. Thus, we have the decomposition

⟦−⟧ = ⟦MR
R(−)⟧R × ⟦MR×BP

R (−)⟧R .

where ⟦−⟧R is the ΠOp/ΠB/ΠF -model from the previous section.
For reverse mode, we again only show the nth clause for brevity, and we use an

unspecified term unzip which unzips tuples. Furthermore, we write some effectful
operations as if they were values with the understanding that they represent
unwritten intermediate bindings, just as with forward mode. Finally, we use an
n-ary sum in place of addition, and all said the final definition is

Hrev = {return x 7→ return x

apR×BP
n (f, v) k 7→ case unzip! v of
(w, (dw1, . . . , dwn))→ k! (apR

n (f, w), λz .
r1 ← dw1! (apR

2 (∗, (apR
n (∂1 f, w), z)));

· · ·
rn ← dwn! (apR

2 (∗, (apR
n (∂n f, w), z)));

apR
n (sum, (r1, . . . , rn))

)

}.

Let R; x : R ⊢ER M : FR such that M is in the domain of our macros. Define
the following terms

β1 B ⟦; y : R ⊢∅ handle (λx .MR
R(M)) y with Heval : F (R)⟧R

β2 B

LPPPPPPPPN

; y : R×BP ⊢∅

handle
handle (λx.MR×BP

R (M)) y with Hrev

with Heval

: F (R×BP )

MQQQQQQQQO

R

β B β1 × β2.

using the ΠF -model ⟦−⟧R. We will show that β lifts along p using the definition
of the free algebraic lift. Let us begin calculating β1 in the internal language

β1 = λy. ⟦MR
R(M)⟧R (y)≫=Heval
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and β2

β2 = λy.
(
⟦MR×BP

R (M)⟧R (y)≫=Hrev

)
≫=Heval

Proposition 8.3.1 showed by the basic lemma for logical relations that ⟦M⟧ =
⟦MR

R(M)⟧R × ⟦MR×BP
R (M)⟧R lifts. Thus, defining

α1 B λx.x≫=Heval

α2 B λx.(x≫=Hrev)≫=Heval

α B α1 × α2

it is sufficient to show α lifts. Note that

α : (TERR, TER×BP (R×BP )
)
→ (R,R×BP )

and so, where Ṫ is the lift of TER × TER×BP , we must prove

α : ṪRRev →̇RRev.

Define X B α∗RRev. Then ηT respects X at RRev as in forward mode. Next,
we want to show

apR
n × apR×BP

n :
(
Op=

n ×̇RRev
n
)
×̇XRRev →̇X.

Define Γ1 B f : Opn, v : Rn, k : UER(R → FR) and Γ2 B f : Opn, v : (R ×
BP )n, k : UER×BP (R×BP → F (R×BP )), and as before

α1.apR
n =

LPPPPPPPPPPPN

; Γ1 ⊢∅

handle
x← apR

n (f, v);
k! x

with Heval

: F (R)

MQQQQQQQQQQQO

R

α2.apR×BP
n =

LPPPPPPPPPPPPPPPPPN

; Γ2 ⊢∅

handle
handle
x← apR×BP

n (f, v);
k! x

with Hrev

with Heval

: F (R×BP )

MQQQQQQQQQQQQQQQQQO

R
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as well as

α1.apR
n = α1. ⟦; Γ1 ⊢ER k! (evaln (f, v)) : F (R)⟧R

α2.apR×BP
n = α2.

LPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPN

; Γ2 ⊢ER×BP

case unzip! v of
(w, (dw1, . . . , dwn))→

k! (evaln (f, w), λz .
r1 ← dw1! (

apR
2 (∗, (apR

n (∂1 f, w), z)));
· · ·
rn ← dwn! (

apR
2 (∗, (apR

n (∂n f, w), z)));
apR

n (sum, (r1, . . . , rn))

)

: F (R×BP )

MQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQO

R

noting that there are still ER operations inside the continuation λz.[· · · ] passed
to k in right-hand side of the second equation. Call the denotation of the two
terms γ1 and γ2 respectively. Said continuation λz.[· · · ], post-composed with
(−)≫=Heval, calculates the derivative of f . By short calculation using the linear-
ity of the continuations in their second argument, we see that

γ1 × γ2 :
(
Op=

n ×̇RRev
n
)
×̇XRRev →̇X.

Thus, apR
n × apR×BP

n respects X at RRev analogously to forward mode.
We have proven that X ∈ R(RRev) which means α : ṪRRev →̇RRev as desired.

Thus, we have proven the following theorem.

Theorem 8.3.2. Let R; x : R ⊢ER M : FR be an eff term not using operations
from ER or ER×BP which uses the signature ΠOp. Define the following morphisms

β1 B ⟦; y : R ⊢∅ handle (λx .MR
R(M)) y with Heval : F (R)⟧R

β2 B

LPPPPPPPPN

; y : R×BP ⊢∅

handle
handle (λx.MR2

R (M)) y with Hrev

with Heval

: F (R×BP )

MQQQQQQQQO

R

β B β1 × β2

using the ΠF -model ⟦−⟧R. Then β : RRev →̇ RRev, i.e. for any smooth f : R→ R
and kf : R→ (R⇒ TERR) such that

(
kf (x)(r)≫=Heval

)
= r∇f(x), we have

β ·
(
f × ⟨f, kf⟩

)
= g × ⟨g, kg⟩
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for some smooth g : R → R such that
(
kg(x)(r)≫=Heval

)
= r∇g(x), and so(

kg(x)(1)≫=Heval
)

= ∇g(x).

Let us apply theorem 8.3.2 for f = id : R → R and kf = λx.λr.η(r) where
η is the unit for TER , noting that ∇id = λx.1 and so

(
kf (x)(r)≫=Heval

)
=

η(r)≫=Heval = r = r∇f(x). Thus, we have

β ·
(
f × ⟨f, kf⟩

)
= (β1 × β2) ·

(
id × ⟨id, λx.λr.η(r)⟩

)
= β1 ×

(
β2 · ⟨id, λx.λr.η(r)⟩

)
and thus we see g = β1, meaning

β2 · ⟨id, λx.λr.η(r)⟩ = ⟨β1, kβ1⟩

where
(
kβ1(x)(r)≫=Heval

)
= r∇β1(x), and finally that for any x ∈ R we have

β2(x, λr.η(r)) =
(
β1(x), k

)
where

(
k(1)≫=Heval

)
= 1 · ∇β1(x) = ∇β1(x). Recall that our helper function for

continuation reverse mode is
d : {( Prop X [e|]) -> [e| Smooth X, Smooth (Prop X [e|])] (Prop X [e|])}

-> X -> [e| Smooth X] X

d f x = let bp = dv ( reverse (f (prop x {z -> z}))) in bp (c 1.0)

where reverse is our continuation reverse mode handler. Therefore, we are evaluat-
ing the function f at (x, λr.η(r)) and returning k(1), which shows that d calculates
the derivative of f when computed under the evaluation handler.



Chapter 9

Conclusion

Turmeric

This thesis has shown the suitability of effects and handlers for implementing
and proving the correctness of automatic differentiation algorithms.

Background

We began this thesis by providing background for our work. We covered the his-
tory, practice, and theory of AD, and saw how to derive some of the basic modes.
Next, we introduced effects and handlers by example and described important
dimensions of their design space. We also examined the four languages we used,
namely Frank, Eff, Koka, and OCaml, and analyzed their design choices.

Implementation

The next part of this thesis focused on implementing AD modes in all of the cho-
sen languages, divided into standard and advanced modes, with our main focus

169
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on the Frank implementations. Frank has a formal operational semantics, which
we took advantage of by showing how example programs executed. We began
by defining an effect for smooth functions which was parameterized by a type
variable representing real numbers which would change for each algorithm. We
then defined an evaluation handler which interprets our effect. Evaluation mode
instantiated the effect’s type variable to floats, which allowed each smooth func-
tion to be implemented by the corresponding operation on floats. Forward mode
and continuation reverse mode were the first standard AD modes we considered.
We observed that executing them had the outcome of substituting each effectful
operation for a corresponding operation on a generalized numeric type. Stateful
reverse mode was the next mode we studied. It took advantage of the compli-
cated control flow that effects and handlers afford, which we examined in detail
when we executed an example program. We saw that by executing code after re-
suming the captured continuation a reverse pass was built up in a manner which
reversed the original data dependency. The next standard mode we investigated
was taped reverse mode, which captured the reverse pass of stateful reverse mode
as a data structure, or tape. This movement of state out of the handler allowed
the Koka version of the program to erase the mutable state effect by deducing
that the mutability was locally contained. Furthermore, we discussed that the
taped reverse mode handler was tail recursive, which Koka took advantage of
to generate more efficient code during compilation. The final standard mode we
explored was produced by combining previously defined modes. We investigated
these combined modes through the lens of perturbation confusion, a class of AD
bugs, and showed how effect type systems can help the user avoid such bugs.
Finally, we verified that our system did not suffer from a variant of perturbation
confusion known as higher-order perturbation confusion.

We continued our implementations by exploring more advanced modes of AD.
We described variants of forward mode and taped reverse mode which directly
calculated second derivatives. Next, we investigated a particularly interesting AD
mode, checkpointed reverse mode, which lowers maximum memory residency at
the cost of recomputation. Our implementation was able to reuse the previous
definition of stateful reverse mode, and took advantage of the ability of handlers
to give multiple effectful interpretations to a single term. Furthermore, the im-
plementation closely matched the high-level description of the algorithm. We also
performed an example execution to observe the behavior of the handler. Finally,
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we implemented two versions of stateful reverse mode which took into considera-
tion higher-order functions, one of which mirrored the structure of checkpointed
reverse mode.

We concluded the implementation part by reporting the asymptotics of each
standard AD mode and performing a real world benchmark. Each mode was
applied to the same test term, and the resulting data was analyzed for linear and
quadratic best fit, where a linear fit meant that the algorithm was a constant
multiple slower than performing no AD. We learned that the algorithms can ex-
hibit incorrect asymptotics, but all modes except continuation reverse mode had
the correct asymptotics in at least one language. Continuation reverse mode is
not used in practice, with either stateful or taped reverse mode being more ef-
ficient. We also implemented a version of stateful reverse mode extended with
tensor operations and added it to a benchmark suite of practical AD tools applied
to a real-world program. Our implementation was competitive with comparable
tools (CPU based and define-by-run). Thus, we concluded that effects and han-
dlers provided the correct asymptotics for AD and were competitive on real world
examples.

Correctness

The correctness part of this thesis focused on building tools for applying cat-
egorical logical relations to effects and handlers. We then applied these tools
to diffeological spaces and proved forward mode and continuation reverse mode
correct. We began by recalling facts about initial algebras and free monads, fo-
cussing on categories C which were complete, cocomplete, and bi-cartesian closed.
We then showed that for an endofunctor F : C → C which preserved λ-chains, the
construction of maps out of its free monadM had an enriched version. We then
introduced the languages mam and eff, described their operational semantics
and set theoretic denotational semantics, and recalled relevant theorems. Next,
we created a sound categorical denotational semantics for mam and eff and
defined what a valid model of each was. We then noted that a complete and
cocomplete bi-CCC where each functor B ⇒ − preserved λB-chains for some
ordinal λB always generated a model. We continued by introducing fibrations
for logical relations, a categorical generalization of logical relations, and methods
of generating such fibrations. Our linchpin theorem showed that for any FFLR
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p : C → E and eff modelM, there existed a lifted model Ṁ. With this theorem,
we then proved the basic lemma of logical relations for both types and terms,
which completed our framework.

We continued the correctness part by introducing the category Diff of diffe-
ological spaces, a generalization of Euclidean spaces and smooth manifolds. We
then created two FFLRs for diffeological spaces based on monomorphisms and
strong monomorphisms. Next, we concluded that because Diff is locally pre-
sentable and cartesian closed, the functor B ⇒ − had rank, and so Diff and
Diff × Diff each always generated eff models. Finally, armed with these re-
sults, we then proved the correctness of forward mode and continuation reverse
mode, where we took advantage of the inductive structure of deep handlers.

Future work

There are several interesting directions in which to continue our work:

• It would be valuable to compare our effect and handler implementations
to tools used by practitioners and measure absolute performance. Most
effective AD systems allow matrix and tensor level basic operations, and
we predict that the relative overhead of effects and handlers extended with
these operations will greatly decrease due to the increased computation of
each operation.

• The checkpointed reverse mode we implemented is user-driven; only the
code explicitly annotated by the user is checkpointed. [Jeffrey Mark Siskind
and Barak A. Pearlmutter, 2017] describe a checkpointed reverse mode
which does not require user annotation. Their divide-and-conquer algo-
rithm requires “splitting a program in half” with respect to execution cost,
and then recursing on each half. Thus, their algorithm is a perfect fit for
multi-shot handlers which can run the program once to split it in half with
a measurement handler, and then run it again to recurse using a different
handler.

• An obvious extension is to add inbuilt state to eff and then to prove stateful
reverse mode as well as the higher-order function modes. We believe FFLRs
and our theorems are capable of this by moving to presheaf categories and
using a local state monad.
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• By working with ωCPOs or similar, we believe we could add recursion
and shallow handlers. In fact, [Vákár, 2020] combines diffeological spaces
with an ωCPO structure to prove forward mode correct in a language with
recursion.





Appendix A

Programs

A.1 Smooth Effect and Helper Functions

Listing A.1: Smooth effect and helper functions (Eff)
1 type nullary = Const of float ;;

2 type unary = Negate ;;

3 type binary = Add | Multiply ;;

4
5 type arg = L | R;;

6
7 type ’a smooth = effect

8 operation ap0 : nullary -> ’a

9 operation ap1 : unary * ’a -> ’a

10 operation ap2 : binary * ’a * ’a -> ’a

11 end ;;

12
13 let op0 s n = s#ap0 n;;

14 let op1 s u x = s#ap1 (u, x);;

15 let op2 s b x y = s#ap2 (b, x, y);;

16
17 let der1 s u x =

18 let c x = s#ap0 ( Const x) in

19 let ( ~- ) x = s#ap1 (Negate , x) in

20 let ( + ) x y = s#ap2 (Add , x, y) in

21 let ( * ) x y = s#ap2 (Multiply , x, y) in

22 match u with

23 | Negate -> ~- (c 1.0);;

24
25 let dder1 s u x =

26 let c x = s#ap0 ( Const x) in

27 let ( ~- ) x = s#ap1 (Negate , x) in

28 let ( + ) x y = s#ap2 (Add , x, y) in

29 let ( * ) x y = s#ap2 (Multiply , x, y) in

30 match u with

31 | Negate -> c 0.0;;
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32
33 let der2 s b a x y =

34 let c x = s#ap0 ( Const x) in

35 let ( ~- ) x = s#ap1 (Negate , x) in

36 let ( + ) x y = s#ap2 (Add , x, y) in

37 let ( * ) x y = s#ap2 (Multiply , x, y) in

38 match b with

39 | Add -> ( match a with L -> c 1.0 | R -> c 1.0)

40 | Multiply -> ( match a with L -> y | R -> x);;

41
42 let dder2 s b same a1 a2 x y =

43 let c x = s#ap0 ( Const x) in

44 let ( ~- ) x = s#ap1 (Negate , x) in

45 let ( + ) x y = s#ap2 (Add , x, y) in

46 let ( * ) x y = s#ap2 (Multiply , x, y) in

47 if same then

48 match b with

49 | Add -> ( match a1 with L -> c 0.0 | R -> c 0.0)

50 | Multiply -> ( match a1 with L -> c 2.0 | R -> c 2.0)

51 else

52 match b with

53 | Add -> (

54 match a1 with

55 L -> ( match a2 with L -> c 0.0 | R -> c 0.0)

56 | R -> ( match a2 with L -> c 0.0 | R -> c 0.0)

57 )

58 | Multiply -> (

59 match a1 with

60 L -> ( match a2 with L -> c 0.0 | R -> c 1.0)

61 | R -> ( match a2 with L -> c 1.0 | R -> c 0.0)

62 );;

Listing A.2: Smooth effect and helper functions (Koka)
1 pub module smooth

2
3 import std/num/ float64

4
5 pub infixl 6 (+.)

6 pub infixl 7 (*.)

7
8 type nullary {

9 Const (x : float64 )

10 }

11
12 type unary {

13 Negate

14 Sin

15 Cos

16 Exp

17 }

18
19 type binary {
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20 Plus

21 Subtract

22 Times

23 Divide

24 }

25
26 type arg {

27 L

28 R

29 }

30
31 effect smooth <a> {

32 ctl ap0(n : nullary ) : a

33 ctl ap1(u : unary , arg : a) : a

34 ctl ap2(b : binary , arg1 : a, arg2 : a) : a

35 }

36
37 inline fun c(i : float64 ) : smooth <a> a {

38 ap0( Const (i))

39 }

40
41 inline fun (~.)( x : a) : smooth <a> a {

42 ap1(Negate , x)

43 }

44
45 inline fun sin_(x : a) : smooth <a> a {

46 ap1(Sin , x)

47 }

48
49 inline fun cos_(x : a) : smooth <a> a {

50 ap1(Cos , x)

51 }

52
53 inline fun exp_(x : a) : smooth <a> a {

54 ap1(Exp , x)

55 }

56
57 inline fun (+.)( x : a, y : a) : smooth <a> a {

58 ap2(Plus , x, y)

59 }

60
61 inline fun ( -.)(x : a, y : a) : smooth <a> a {

62 ap2(Subtract , x, y)

63 }

64
65 inline fun (*.)( x : a, y : a) : smooth <a> a {

66 ap2(Times , x, y)

67 }

68
69 inline fun div_(x : a, y : a) : smooth <a> a {

70 ap2(Divide , x, y)

71 }

72
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73 inline fun op0(n) {

74 match (n) {

75 Const (x) -> c(x)

76 }

77 }

78
79 inline fun op1(u, x) {

80 match (u) {

81 Negate -> (~.)( x)

82 Sin -> sin_(x)

83 Cos -> cos_(x)

84 Exp -> exp_(x)

85 }

86 }

87
88 inline fun op2(b, x, y) {

89 match (b) {

90 Plus -> x +. y

91 Subtract -> x -. y

92 Times -> x *. y

93 Divide -> div_(x, y)

94 }

95 }

96
97 inline fun der1(u, x) {

98 match (u) {

99 Negate -> (~.)( c (1.0))

100 Sin -> cos_(x)

101 Cos -> (~.)( sin_(x))

102 Exp -> (~.)( c (1.0))

103 }

104 }

105
106 inline fun der2(b, a, x, y) {

107 match (b) {

108 Plus -> match (a) {L -> c (1.0); R -> c (1.0)}

109 Subtract -> match (a) {L -> c (1.0); R -> c (~1.0)}

110 Times -> match (a) {L -> y; R -> x}

111 Divide -> match (a) {L -> div_(c(1.0) , y); R -> div_ ((~.)( x), y *. y)}

112 }

113 }

114
115 inline fun dder1 (u, x) {

116 match (u) {

117 Negate -> c (0.0)

118 Sin -> (~.)( sin_(x))

119 Cos -> (~.)( cos_(x))

120 Exp -> exp_(x)

121 }

122 }

123
124 inline fun dder2 (b, same , a1 , a2 , x, y) {

125 if same then
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126 match (b) {

127 Plus -> match (a1) {L -> c (0.0); R -> c (0.0)}

128 Subtract -> match (a1) {L -> c (0.0); R -> c (0.0)}

129 Times -> match (a1) {L -> c (2.0); R -> c (2.0)}

130 Divide -> match (a1) {L -> c (0.0); R -> c (0.0)}

131 }

132 else

133 match (b) {

134 Plus -> match (a1) {

135 L -> match (a2) {L -> c (0.0); R -> c (0.0)}

136 R -> match (a2) {L -> c (0.0); R -> c (0.0)}

137 }

138 Subtract -> match (a1) {

139 L -> match (a2) {L -> c (0.0); R -> c (0.0)}

140 R -> match (a2) {L -> c (0.0); R -> c (0.0)}

141 }

142 Times -> match (a1) {

143 L -> match (a2) {L -> c (0.0); R -> c (1.0)}

144 R -> match (a2) {L -> c (1.0); R -> c (0.0)}

145 }

146 Divide -> match (a1) {

147 L -> match (a2) {L -> c (0.0); R -> div_(c(~1.0) , y *. y)}

148 R -> match (a2) {

149 L -> div_(c(~1.0) , y *. y)

150 R -> div_(c (2.0) *. x, y *. y *. y)

151 }

152 }

153 }

154 }

155
156 fun term(x : a, y : a) : smooth <a> a {

157 c (1.0) +. (x *. x *. x) +. ((~.)( y *. y))

158 }

Listing A.3: Smooth effect and helper functions (OCaml)
1 open Effect

2
3 type nullary = Const of float

4 type unary = Negate | Sin | Cos | Exp

5 type binary = Plus | Subtract | Times | Divide

6
7 type arg = L | R

8
9 module type SMOOTH = sig

10 type t

11 type _ Effect .t += Ap0 : nullary -> t Effect .t

12 | Ap1 : unary * t -> t Effect .t

13 | Ap2 : binary * t * t -> t Effect .t

14
15 val c : float -> t

16 val ( ~. ) : t -> t

17 val sin_ : t -> t
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18 val cos_ : t -> t

19 val exp_ : t -> t

20 val ( +. ) : t -> t -> t

21 val ( -. ) : t -> t -> t

22 val ( *. ) : t -> t -> t

23 val ( /. ) : t -> t -> t

24
25 val op0 : nullary -> t

26 val op1 : unary -> t -> t

27 val op2 : binary -> t -> t -> t

28
29 val der1 : unary -> t -> t

30 val dder1 : unary -> t -> t

31 val der2 : binary -> arg -> t -> t -> t

32 val dder2 : binary -> bool -> arg -> arg -> t -> t -> t

33 end

34
35 module Smooth (T : sig type t end) : SMOOTH with type t = T.t = struct

36 type t = T.t

37 type _ Effect .t += Ap0 : nullary -> t Effect .t

38 | Ap1 : unary * t -> t Effect .t

39 | Ap2 : binary * t * t -> t Effect .t

40
41 let c x = perform (Ap0 ( Const x))

42 let ( ~. ) a = perform (Ap1 (Negate , a))

43 let sin_ a = perform (Ap1 (Sin , a))

44 let cos_ a = perform (Ap1 (Cos , a))

45 let exp_ a = perform (Ap1 (Exp , a))

46 let ( +. ) a b = perform (Ap2 (Plus , a, b))

47 let ( -. ) a b = perform (Ap2 (Subtract , a, b))

48 let ( *. ) a b = perform (Ap2 (Times , a, b))

49 let ( /. ) a b = perform (Ap2 (Divide , a, b))

50
51 let op0 n = match n with

52 | Const x -> c x

53 let op1 u x = match u with

54 | Negate -> ~. x

55 | Sin -> sin_ x

56 | Cos -> cos_ x

57 | Exp -> exp_ x

58 let op2 b x y = match b with

59 | Plus -> x +. y

60 | Subtract -> x -. y

61 | Times -> x *. y

62 | Divide -> x /. y

63
64 let der1 u x = match u with

65 | Negate -> ~. (c 1.0)

66 | Sin -> cos_ x

67 | Cos -> ~. (sin_ x)

68 | Exp -> exp_ x

69 let dder1 u x = match u with

70 | Negate -> c 0.0
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71 | Sin -> ~. (sin_ x)

72 | Cos -> ~. (cos_ x)

73 | Exp -> exp_ x

74 let der2 b a x y = match b with

75 | Plus -> ( match a with L -> c 1.0 | R -> c 1.0)

76 | Subtract -> ( match a with L -> c 1.0 | R -> c ( -1.0))

77 | Times -> ( match a with L -> y | R -> x)

78 | Divide -> ( match a with L -> (c 1.0) /. y | R -> (~. x) /. (y *. y))

79 let dder2 b same a1 a2 x y =

80 if same then

81 match b with

82 | Plus -> ( match a1 with L -> c 0.0 | R -> c 0.0)

83 | Subtract -> ( match a1 with L -> c 0.0 | R -> c 0.0)

84 | Times -> ( match a1 with L -> c 2.0 | R -> c 2.0)

85 | Divide -> ( match a1 with L -> c 0.0 | R -> c 0.0)

86 else

87 match b with

88 | Plus -> ( match a1 with

89 | L -> ( match a2 with L -> c 0.0 | R -> c 0.0)

90 | R -> ( match a2 with L -> c 0.0 | R -> c 0.0)

91 )

92 | Subtract -> ( match a1 with

93 | L -> ( match a2 with L -> c 0.0 | R -> c 0.0)

94 | R -> ( match a2 with L -> c 0.0 | R -> c 0.0)

95 )

96 | Times -> ( match a1 with

97 | L -> ( match a2 with L -> c 0.0 | R -> c 1.0)

98 | R -> ( match a2 with L -> c 1.0 | R -> c 0.0)

99 )

100 | Divide -> ( match a1 with

101 | L -> ( match a2 with L -> c 0.0 | R -> (c ( -1.0)) /. (y *. y))

102 | R -> ( match a2 with

103 | L -> (c ( -1.0)) /. (y *. y)

104 | R -> (c 2.0 *. x) /. (y *. y *. y)

105 )

106 )

107 end

A.2 Evaluation

Listing A.4: Evaluation (Eff)
1 let evaluate s = handler

2 | s#ap0 n k -> ( match n with Const x -> k x)

3 | s#ap1 (u, x) k -> ( match u with Negate -> k (~ -. x))

4 | s#ap2 (b, x, y) k ->

5 ( match b with

6 | Add -> k (x +. y)

7 | Multiply -> k (x *. y))

8 | val x -> x;;
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Listing A.5: Evaluation (Koka)
1 pub module evaluate

2
3 import std/num/ float64

4 import smooth

5
6 val evaluate = handler {

7 ctl ap0(n) -> match (n) { Const (i) -> resume (i)}

8 ctl ap1(u,x) -> match (u) {

9 Negate -> resume (~x : float64 )

10 Sin -> resume (sin(x) : float64 )

11 Cos -> resume (cos(x) : float64 )

12 Exp -> resume (exp(x) : float64 )

13 }

14 ctl ap2(b,x,y) -> match (b) {

15 Plus -> resume (x + y : float64 )

16 Subtract -> resume (x - y : float64 )

17 Times -> resume (x * y : float64 )

18 Divide -> resume (x / y : float64 )

19 }

20 }

Listing A.6: Evaluation (OCaml)
1 open Effect .Deep

2 open Float

3 open Smooth

4
5 module Evaluate = struct

6 include Smooth ( struct type t = float end)

7
8 let evaluate = {

9 retc = (fun x -> x);

10 exnc = raise ;

11 effc = (fun (type a) (eff : a Effect .t) ->

12 match eff with

13 | Ap0 n -> Some (fun (k : (a, _) continuation ) ->

14 match n with

15 | Const x -> continue k x

16 )

17 | Ap1 (u, x) -> Some (fun k ->

18 match u with

19 | Negate -> continue k (neg x)

20 | Sin -> continue k (sin x)

21 | Cos -> continue k (cos x)

22 | Exp -> continue k (exp x)

23 )

24 | Ap2 (b, x, y) -> Some (fun k ->

25 match b with

26 | Plus -> continue k (add x y)

27 | Subtract -> continue k (sub x y)

28 | Times -> continue k (mul x y)

29 | Divide -> continue k (div x y)
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30 )

31 | _ -> None

32 )

33 }

34 end

A.3 Forward Mode

Listing A.7: Forward mode (Eff)
1 type ’a dual = Dual of ’a * ’a;;

2
3 let forward i o =

4 let c x = o#ap0 ( Const x) in

5 let ( ~- ) x = o#ap1 (Negate , x) in

6 let ( + ) x y = o#ap2 (Add , x, y) in

7 let ( * ) x y = o#ap2 (Multiply , x, y) in

8 handler

9 | i#ap0 n k ->

10 k (Dual (op0 o n, c 0.0))

11 | i#ap1 (u, Dual (x, dx )) k ->

12 k (Dual (op1 o u x, der1 o u x * dx ))

13 | i#ap2 (b, Dual (x, dx), Dual (y, dy )) k ->

14 k (Dual (op2 o b x y, (der2 o b L x y * dx) + (der2 o b R x y * dy )))

15 | val x -> x;;

16
17 let diff i o f x =

18 let Dual (r, dr) = with forward i o handle

19 f i (Dual (x, op0 o ( Const 1.0))) in

20 dr ;;

Listing A.8: Forward mode (Koka)
1 pub module forward

2
3 import smooth

4
5 value type dual <a> {

6 Dual(v : a, dv : a)

7 }

8
9 val diff = handler {

10 ctl ap0(n) ->

11 resume (Dual(op0(n), c (0.0)))

12 ctl ap1(u,x) ->

13 resume (Dual(op1(u,x.v), der1(u,x.v) *. x.dv ))

14 ctl ap2(b,x,y) ->

15 resume (Dual(op2(b,x.v,y.v), (der2(b,L,x.v,y.v) *. x.dv) +.

16 (der2(b,R,x.v,y.v) *. y.dv )))

17 }

18
19 fun d(
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20 f : dual <a> -> <smooth <dual <a>>,smooth <a >|e> dual <a>,

21 x : a

22 ) : <smooth <a >|e> a {

23 val res = diff{f(Dual(x,mask <smooth >{c (1.0)}))}

24 res.dv

25 }

26
27 fun lift(x : a) : <smooth <dual <a>>,smooth <a>> dual <a> {

28 mask <smooth >{ Dual(x, c (0.0))}

29 }

Listing A.9: Forward mode (OCaml)
1 open Effect .Deep

2 open Smooth

3
4 type ’t dual = {v : ’t; dv : ’t}

5
6 module Forward (T : SMOOTH ) = struct

7 include Smooth ( struct type t = T.t dual end)

8
9 let forward = {

10 retc = (fun x -> x);

11 exnc = raise ;

12 effc = (fun (type a) (eff : a Effect .t) ->

13 match eff with

14 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

15 continue k {v = op0 n; dv = c 0.0}

16 )

17 | Ap1 (u, x) -> Some (fun k -> let open T in

18 continue k {v = op1 u x.v; dv = der1 u x.v *. x.dv}

19 )

20 | Ap2 (b, x, y) -> Some (fun k -> let open T in

21 continue k {v = op2 b x.v y.v; dv = (der2 b L x.v y.v *. x.dv) +.

22 (der2 b R x.v y.v *. y.dv )}

23 )

24 | _ -> None

25 )

26 }

27
28 let diff f x =

29 let res = match_with f {v = x; dv = T.c 1.0} forward in res.dv

30 end

A.4 Continuation Reverse Mode

Listing A.10: Continuation reverse mode (Eff)
1 type ’a prop = Prop of ’a * (’a -> ’a);;

2
3 let reverse i o =

4 let c x = o#ap0 ( Const x) in
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5 let ( ~- ) x = o#ap1 (Negate , x) in

6 let ( + ) x y = o#ap2 (Add , x, y) in

7 let ( * ) x y = o#ap2 (Multiply , x, y) in

8 handler

9 | i#ap0 n k ->

10 k (Prop (op0 o n, (fun z -> c 0.0)))

11 | i#ap1 (u, Prop (x, dx )) k ->

12 k (Prop (op1 o u x, (fun z -> dx (der1 o u x * z))))

13 | i#ap2 (b, Prop (x, dx), Prop (y, dy )) k ->

14 k (Prop (op2 o b x y, (fun z ->

15 (dx (der2 o b L x y * z)) + (dy (der2 o b R x y * z))))

16 )

17 | val x -> x;;

18
19 let d i o f x =

20 let Prop (r, dr) = with reverse i o handle

21 f i (Prop (x, (fun z -> z))) in

22 dr (op0 o ( Const 1.0));;

Listing A.11: Continuation reverse mode (Koka)
1 pub module reverse - continuation

2
3 import smooth

4
5 value type prop <e,a> {

6 Prop(v : a, dv : a -> <smooth <a >|e> a)

7 }

8
9 val reverse = handler {

10 ctl ap0(n) -> {

11 val r = Prop(op0(n), fn(z) {c (0.0)})

12 resume (r)

13 }

14 ctl ap1(u,x) -> {

15 val r = Prop(op1(u,x.v), fn(z) {

16 (x.dv )( der1(u,x.v) *. z)

17 })

18 resume (r)

19 }

20 ctl ap2(b,x,y) -> {

21 val r = Prop(op2(b,x.v,y.v), fn(z) {

22 val xv = (x.dv )( der2(b,L,x.v,y.v) *. z)

23 val yv = (y.dv )( der2(b,R,x.v,y.v) *. z)

24 xv +. yv

25 })

26 resume (r)

27 }

28 }

29
30 fun grad(f, x) {

31 val xp = Prop(x, fn(z) {z})

32 val r = reverse {f(xp )}
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33 (r.dv )(c (1.0))

34 }

Listing A.12: Continuation reverse mode (OCaml)
1 open Effect .Deep

2 open Smooth

3
4 type ’t prop = {v : ’t; dv : ’t -> ’t}

5
6 module Reverse_continuation (T : SMOOTH ) = struct

7 include Smooth ( struct type t = T.t prop end)

8
9 let reverse = {

10 retc = (fun x -> x);

11 exnc = raise ;

12 effc = (fun (type a) (eff : a Effect .t) ->

13 match eff with

14 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

15 continue k {v = op0 n; dv = fun _ -> c 0.0}

16 )

17 | Ap1 (u, x) -> Some (fun k -> let open T in

18 continue k {v = op1 u x.v; dv = fun z -> x.dv (der1 u x.v *. z)}

19 )

20 | Ap2 (b, x, y) -> Some (fun k -> let open T in

21 continue k {v = op2 b x.v y.v;

22 dv = fun z -> x.dv (der2 b L x.v y.v *. z) +.

23 y.dv (der2 b R x.v y.v *. z)}

24 )

25 | _ -> None

26 )

27 }

28
29 let d f x =

30 let res = match_with f {v = x; dv = fun z -> z} reverse in res.dv (T.c 1.0)

31 end

A.5 Stateful Reverse Mode

Listing A.13: Stateful reverse mode (Eff)
1 type ’a prop = Prop of ’a * ’a ref

2
3 let reverse i o =

4 let c x = o#ap0 ( Const x) in

5 let ( ~- ) x = o#ap1 (Negate , x) in

6 let ( + ) x y = o#ap2 (Add , x, y) in

7 let ( * ) x y = o#ap2 (Multiply , x, y) in

8 handler

9 | i#ap0 n k ->

10 let r = Prop (op0 o n, ref (c 0.0)) in

11 k r



A.5. Stateful Reverse Mode 187

12 | i#ap1 (u, Prop (x, dx )) k ->

13 let dr = ref (c 0.0) in

14 let r = Prop (op1 o u x, dr) in

15 ignore (k r);

16 dx := !dx + (der1 o u x * !dr)

17 | i#ap2 (b, Prop (x, dx), Prop (y, dy )) k ->

18 let dr = ref (c 0.0) in

19 let r = Prop (op2 o b x y, dr) in

20 ignore (k r);

21 dx := !dx + (der2 o b L x y * !dr );

22 dy := !dy + (der2 o b R x y * !dr)

23 | val x -> x;;

24
25 let grad i o f x =

26 let dz = ref (op0 o ( Const 0.0)) in

27 let z = Prop (x, dz) in

28 ( with reverse i o handle

29 let Prop (r, dr) = f i z in

30 dr := op0 o ( Const 1.0)

31 );

32 !dz ;;

Listing A.14: Stateful reverse mode (Koka)
1 pub module reverse

2
3 import smooth

4
5 value type prop <h,a> {

6 Prop(v : a, dv : ref <h, a >)

7 }

8
9 val reverse = handler {

10 ctl ap0(n) -> {

11 val r = Prop(op0(n), ref(c (0.0)))

12 resume (r)

13 }

14 ctl ap1(u,x) -> {

15 val r = Prop(op1(u,x.v), ref(c (0.0)))

16 resume (r)

17 set(x.dv , !x.dv +. (der1(u,x.v) *. !r.dv ))

18 }

19 ctl ap2(b,x,y) -> {

20 val r = Prop(op2(b,x.v,y.v), ref(c (0.0)))

21 resume (r)

22 set(x.dv , !x.dv +. (der2(b,L,x.v,y.v) *. !r.dv ))

23 set(y.dv , !y.dv +. (der2(b,R,x.v,y.v) *. !r.dv ))

24 }

25 }

26
27 fun grad(f, x) {

28 val z = Prop(x, ref(c (0.0)))

29 reverse {set(f(z).dv , mask <smooth >{c (1.0)})}
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30 !z.dv

31 }

Listing A.15: Stateful reverse mode (OCaml)
1 open Effect .Deep

2 open Smooth

3
4 type ’t prop = {v : ’t; mutable dv : ’t}

5
6 module Reverse (T : SMOOTH ) = struct

7 include Smooth ( struct type t = T.t prop end)

8
9 let reverse = {

10 retc = (fun x -> x);

11 exnc = raise ;

12 effc = (fun (type a) (eff : a Effect .t) ->

13 match eff with

14 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

15 continue k {v = op0 n; dv = c 0.0}

16 )

17 | Ap1 (u, x) -> Some (fun k -> let open T in

18 let r = {v = op1 u x.v; dv = c 0.0} in

19 continue k r;

20 x.dv <- x.dv +. (der1 u x.v *. r.dv)

21 )

22 | Ap2 (b, x, y) -> Some (fun k -> (let open T in

23 let r = {v = op2 b x.v y.v; dv = c 0.0} in

24 continue k r;

25 x.dv <- x.dv +. (der2 b L x.v y.v *. r.dv );

26 y.dv <- y.dv +. (der2 b R x.v y.v *. r.dv)

27 ))

28 | _ -> None

29 )

30 }

31
32 let grad f x =

33 let r = {v = x; dv = T.c 0.0} in

34 match_with (fun x -> (f x). dv <- T.c 1.0) r reverse ;

35 r.dv

36 end

A.6 Taped Reverse Mode

Listing A.16: Taped reverse mode (Eff)
1 type name = Name of int

2
3 let get_value (Name i) = i

4
5 type fresh = effect

6 operation fresh : unit -> name
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7 end ;;

8
9 let increment_name t init = handler

10 | t# fresh () k -> (fun i -> k (Name i) (i + 1))

11 | val x -> (fun i -> (i, x))

12 | finally f -> f init ;;

13
14 type ’a prop = Prop of ’a * (name option )

15
16 type ’a pointer = Single of name * ’a

17 | Double of name * name * ’a * ’a

18
19 let reverse f i o =

20 let c x = o#ap0 ( Const x) in

21 let ( ~- ) x = o#ap1 (Negate , x) in

22 let ( + ) x y = o#ap2 (Add , x, y) in

23 let ( * ) x y = o#ap2 (Multiply , x, y) in

24 handler

25 | i#ap0 n k -> (fun tape ->

26 let r = Prop (op0 o n, None) in

27 k r tape

28 )

29 | i#ap1 (u, Prop (x, dx )) k -> (fun tape ->

30 let res = op1 o u x in

31 let tr = match dx with

32 | None ->

33 (tape , Prop (res , None ))

34 | Some nx ->

35 ( Single (nx , (der1 o u x)) :: tape , Prop (res , Some (f# fresh ())))

36 in

37 k (snd tr) (fst tr)

38 )

39 | i#ap2 (b, Prop (x, dx), Prop (y, dy )) k -> (fun tape ->

40 let res = op2 o b x y in

41 let tr = match (dx , dy) with

42 | (None , None) ->

43 (tape , Prop (res , None ))

44 | (Some nx , None) ->

45 ( Single (nx , der2 o b L x y) :: tape , Prop (res , Some (f# fresh ())))

46 | (None , Some ny) ->

47 ( Single (ny , der2 o b R x y) :: tape , Prop (res , Some (f# fresh ())))

48 | (Some nx , Some ny) ->

49 ( Double (nx , ny , der2 o b L x y, der2 o b R x y) :: tape ,

50 Prop (res , Some (f# fresh ()))

51 )

52 in

53 k (snd tr) (fst tr)

54 )

55 | val x -> (fun tape -> (tape , x))

56 | finally f -> f [];;

57
58 let rec init_state s = function

59 | 0 -> []
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60 | n -> (ref (op0 s ( Const 0.0))) :: init_state s (n -1)

61 | _ -> raise invalidArgument " init_state : need positive length ";;

62
63 let rec foreach_indexed i xs f = match xs with

64 | [] -> ()

65 | x :: xs -> ignore (f i x); foreach_indexed (i+1) xs f;;

66
67 let rec nth i xs = match (i, xs) with

68 | (0, x :: xs) -> x

69 | (n, x :: xs) -> nth (n -1) xs

70 | _ -> raise invalidArgument "nth: list too short ";;

71
72 let d t i o f x =

73 let res =

74 with increment_name t 0 handle

75 let z = Prop (x, Some (t# fresh ())) in

76 with reverse t i o handle (f i z) in

77 let m = fst res in

78 let tape = fst (snd res) in

79 let state = init_state o m in

80 (nth (m - 1) state ) := (op0 o ( Const 1.0));

81 foreach_indexed 0 tape (fun k p ->

82 let ( +. ) x y = o#ap2 (Add , x, y) in

83 let ( *. ) x y = o#ap2 (Multiply , x, y) in

84 match p with

85 | Single (nu , vu) ->

86 let dk = !( nth (m - (k + 1)) state ) in

87 let du = !( nth ( get_value nu) state ) in

88 (nth ( get_value nu) state ) := (du +. (vu *. dk ))

89 | Double (nl , nr , vl , vr) ->

90 let dk = !( nth (m - (k + 1)) state ) in

91 let dl = !( nth ( get_value nl) state ) in

92 (nth ( get_value nl) state ) := (dl +. (vl *. dk ));

93 let dr = !( nth ( get_value nr) state ) in

94 (nth ( get_value nr) state ) := (dr +. (vr *. dk ))

95 );

96 !( nth 0 state );;

Listing A.17: Taped reverse mode (Koka)
1 pub module reverse -tape

2
3 import smooth -tape

4
5 struct name{get - value : int}

6
7 fun show(n : name) : string {

8 "n(" ++ show(n.get - value ) ++ ")"

9 }

10
11 effect fresh

12 fun fresh () : name

13
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14 fun increment -name(init , action ) {

15 var i := init

16 with handler

17 return (x) -> (i, x)

18 fun fresh () -> {val t = i; i := i + 1; Name(t)}

19 action ()

20 }

21
22 value type prop <a> {

23 Prop(v : a, dv : maybe <name >)

24 }

25
26 type pointer <a> {

27 Single (nu : name , vu : a)

28 Double (nl : name , nr : name , vl : a, vr : a)

29 }

30
31 fun reverse ( action ) {

32 var tape := []

33 with handler

34 return (x) -> (tape , x)

35 fun ap0(n) -> Prop(op0(n), Nothing )

36 fun ap1(u,x) ->

37 val res = op1(u,x.v)

38 match (x.dv)

39 Nothing -> Prop(res , Nothing )

40 Just(nx) ->

41 tape := Cons( Single (nx ,der1(u,x.v)), tape)

42 Prop(res , Just( fresh ()))

43 fun ap2(b,xy) ->

44 val x = xy.fst

45 val y = xy.snd

46 val res = op2(b,x.v,y.v)

47 with unsafe -no -exn

48 match ((x.dv ,y.dv ))

49 (Nothing , Nothing ) -> Prop(res , Nothing )

50 (Just(nx), Nothing ) ->

51 tape := Cons( Single (nx ,der2(b,L,x.v,y.v)), tape)

52 Prop(res , Just( fresh ()))

53 (Nothing , Just(ny )) ->

54 tape := Cons( Single (ny ,der2(b,R,x.v,y.v)), tape)

55 Prop(res , Just( fresh ()))

56 (Just(nx), Just(ny )) ->

57 tape := Cons( Double (nx ,ny ,der2(b,L,x.v,y.v),der2(b,R,x.v,y.v)), tape)

58 Prop(res , Just( fresh ()))

59 action ()

60 }

61
62 fun grad(

63 f : prop <a> -> <div ,smooth <prop <a>>,smooth <a >|e> prop <a>,

64 x : a

65 ) : <exn ,div ,smooth <a >|e> a {

66 val (m, (tape , _)) =
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67 with mask <exn >

68 with mask <local >

69 with increment -name (0)

70 with reverse

71 val z = Prop(x, Just( fresh ()))

72 with mask <fresh >

73 f(z)

74 var state := vector (list (1,m,fn(_) {c (0.0)}))

75 state [m - 1] := c (1.0)

76 tape.foreach - indexed fn(k, p)

77 match (p)

78 Single (nu , vu) ->

79 val dk = state [m - (k + 1)]

80 val du = state [nu.get - value ]

81 state [nu.get - value ] := (du +. (vu *. dk ))

82 Double (nl , nr , vl , vr) ->

83 val dk = state [m - (k + 1)]

84 val dl = state [nl.get - value ]

85 state [nl.get - value ] := (dl +. (vl *. dk ))

86 val dr = state [nr.get - value ]

87 state [nr.get - value ] := (dr +. (vr *. dk ))

88 state [0]

89 }

Listing A.18: Taped reverse mode (OCaml)
1 open Effect .Deep

2 open Effect

3 open Smooth

4 open Array

5
6 type name = { get_value : int}

7
8 module type FRESH = sig

9 type _ Effect .t += Fresh : unit -> name Effect .t

10
11 val fresh : unit -> name

12 end

13
14 module Fresh : FRESH = struct

15 type _ Effect .t += Fresh : unit -> name Effect .t

16
17 let fresh () = perform ( Fresh ())

18 end

19
20 type ’t prop = {v : ’t; dv : name option }

21
22 type ’t pointer

23 = Single of name * ’t

24 | Double of name * name * ’t * ’t

25
26 module Reverse_tape (T : SMOOTH ) (F : FRESH ) = struct

27 include Smooth ( struct type t = T.t prop end)
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28 include Fresh

29
30 let increment_name init =

31 let i = ref init in {

32 retc = (fun x -> (!i, x));

33 exnc = raise ;

34 effc = (fun (type a) (eff : a Effect .t) ->

35 match eff with

36 | Fresh () -> Some (fun (k : (a, _) continuation ) ->

37 let t = !i in

38 i := !i + 1;

39 continue k { get_value = t}

40 )

41 | _ -> None

42 )

43 }

44 let reverse () =

45 let tape : T.t pointer list ref = ref [] in {

46 retc = (fun x -> (! tape , x));

47 exnc = raise ;

48 effc = (fun (type a) (eff : a Effect .t) ->

49 match eff with

50 | Ap0 n -> Some (fun (k : (a, _) continuation ) ->

51 let open T in

52 continue k {v = op0 n; dv = None}

53 )

54 | Ap1 (u, x) -> Some (fun k ->

55 let open T in

56 let open F in

57 let res = op1 u x.v in

58 match x.dv with

59 | None -> continue k {v = res; dv = None}

60 | Some nx ->

61 tape := Single (nx , der1 u x.v) :: (! tape );

62 continue k {v = res; dv = Some ( fresh ())}

63 )

64 | Ap2 (b, x, y) -> Some (fun k ->

65 let open T in

66 let open F in

67 let res = op2 b x.v y.v in

68 match (x.dv , y.dv) with

69 | (None , None) -> continue k {v = res; dv = None}

70 | (Some nx , None) ->

71 tape := Single (nx , der2 b L x.v y.v) :: (! tape );

72 continue k {v = res; dv = Some ( fresh ())}

73 | (None , Some ny) ->

74 tape := Single (ny , der2 b R x.v y.v) :: (! tape );

75 continue k {v = res; dv = Some ( fresh ())}

76 | (Some nx , Some ny) ->

77 tape :=

78 Double (nx , ny , der2 b L x.v y.v, der2 b R x.v y.v) :: (! tape );

79 continue k {v = res; dv = Some ( fresh ())}

80 )
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81 | _ -> None

82 )

83 }

84
85 let d f x =

86 let (m, (tape , _)) =

87 match_with (fun () ->

88 match_with f {v = x; dv = Some (F. fresh ())} ( reverse ())

89 ) () ( increment_name 0)

90 in

91 let state = init m (fun _ -> T.c 0.0) in

92 state .(m - 1) <- T.c 1.0;

93 List. iteri (fun k p ->

94 let open T in

95 match p with

96 | Single (nu , vu) ->

97 let dk = state .(m - (k + 1)) in

98 let du = state .( nu. get_value ) in

99 state .( nu. get_value ) <- (du +. (vu *. dk ))

100 | Double (nl , nr , vl , vr) ->

101 let dk = state .(m - (k + 1)) in

102 let dl = state .( nl. get_value ) in

103 state .( nl. get_value ) <- (dl +. (vl *. dk ));

104 let dr = state .( nr. get_value ) in

105 state .( nr. get_value ) <- (dr +. (vr *. dk ))

106 ) tape;

107 state .(0)

108 end

A.7 Higher Derivatives

Listing A.19: Second derivative forward mode (Eff)
1 type ’a triple = Triple of ’a * ’a * ’a;;

2
3 let forward i o =

4 let c x = o#ap0 ( Const x) in

5 let ( ~- ) x = o#ap1 (Negate , x) in

6 let ( + ) x y = o#ap2 (Add , x, y) in

7 let ( * ) x y = o#ap2 (Multiply , x, y) in

8 handler

9 | i#ap0 n k ->

10 k ( Triple (op0 o n, c 0.0 , c 0.0))

11 | i#ap1 (u, Triple (x, dx , ddx )) k ->

12 k ( Triple (op1 o u x, der1 o u x * dx , dder1 o u x * ddx ))

13 | i#ap2 (b, Triple (x, dx , ddx), Triple (y, dy , ddy )) k ->

14 k ( Triple (

15 op2 o b x y,

16 (der2 o b L x y * dx) + (der2 o b R x y * dy),

17 (( dder2 o b false L R x y * (dx * dy )) +

18 (((c 0.5 * dder2 o b false L L x y) * (dx * dx )) +

19 ((c 0.5 * dder2 o b false R R x y) * (dy * dy )))) +
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20 (( der2 o b L x y * ddx) + (der2 o b R x y * ddy )))

21 )

22 | val x -> x;;

23
24 let diff i o f x =

25 let c x = o#ap0 ( Const x) in

26 let ( ~- ) x = o#ap1 (Negate , x) in

27 let ( + ) x y = o#ap2 (Add , x, y) in

28 let ( * ) x y = o#ap2 (Multiply , x, y) in

29 let Triple (r, dr , ddr) = with forward i o handle

30 f i ( Triple (x, c 1.0 , c 0.0)) in

31 c 2.0 * ddr ;;

Listing A.20: Second derivative forward mode (Koka)
1 pub module forward - second

2
3 import smooth

4
5 type triple <a> {

6 Triple (v : a, dv : a, ddv : a)

7 }

8
9 val diff = handler {

10 ctl ap0(n) ->

11 resume ( Triple (

12 op0(n),

13 c(0.0) ,

14 c (0.0)

15 )

16 )

17 ctl ap1(u,x) ->

18 resume ( Triple (

19 op1(u,x.v),

20 der1(u,x.v) *. x.dv ,

21 dder1 (u,x.v) *. x.ddv

22 )

23 )

24 ctl ap2(b,x,y) ->

25 resume ( Triple (

26 op2(b,x.v,y.v),

27 (der2(b,L,x.v,y.v) *. x.dv) +.

28 (der2(b,R,x.v,y.v) *. y.dv),

29 (( dder2 (b,False ,L,R,x.v,y.v) *. (x.dv *. y.dv )) +.

30 (((c (0.5) *. dder2 (b,False ,L,L,x.v,y.v)) *. (x.dv *. x.dv )) +.

31 ((c (0.5) *. dder2 (b,False ,R,R,x.v,y.v)) *. (y.dv *. y.dv )))) +.

32 (( der2(b,L,x.v,y.v) *. x.ddv) +. (der2(b,R,x.v,y.v) *. y.ddv ))

33 )

34 )

35 }

36
37 fun d(

38 f : triple <a> -> <smooth <triple <a>>,smooth <a >|e> triple <a>,
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39 x : a

40 ) : <smooth <a >|e> a {

41 val res = diff{f( Triple (x,mask <smooth >{c(1.0)} , mask <smooth >{c (0.0)}))}

42 c (2.0) *. res.ddv

43 }

44
45 fun lift(x : a) : <smooth <triple <a>>,smooth <a>> triple <a> {

46 mask <smooth >{ Triple (x, c(0.0) , c (0.0))}

47 }

Listing A.21: Second derivative forward mode (OCaml)
1 open Effect .Deep

2 open Smooth

3
4 type ’t triple = {v : ’t; dv : ’t; ddv : ’t}

5
6 module Forward_second (T : SMOOTH ) = struct

7 include Smooth ( struct type t = T.t triple end)

8
9 let forward = {

10 retc = (fun x -> x);

11 exnc = raise ;

12 effc = (fun (type a) (eff : a Effect .t) ->

13 match eff with

14 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

15 continue k {v = op0 n; dv = c 0.0; ddv = c 0.0}

16 )

17 | Ap1 (u, x) -> Some (fun k -> let open T in

18 continue k {

19 v = op1 u x.v;

20 dv = der1 u x.v *. x.dv;

21 ddv = dder1 u x.v *. x.ddv

22 }

23 )

24 | Ap2 (b, x, y) -> Some (fun k -> let open T in

25 continue k {

26 v = op2 b x.v y.v;

27 dv = (der2 b L x.v y.v *. x.dv) +.

28 (der2 b R x.v y.v *. y.dv );

29 ddv = (( dder2 b false L R x.v y.v *. (x.dv *. y.dv )) +.

30 (((c 0.5 *. dder2 b false L L x.v y.v) *. (x.dv *. x.dv )) +.

31 ((c 0.5 *. dder2 b false R R x.v y.v) *. (y.dv *. y.dv ))))

32 +.

33 (( der2 b L x.v y.v *. x.ddv) +. (der2 b R x.v y.v *. y.ddv ))

34 }

35 )

36 | _ -> None

37 )

38 }

39
40 let diff f x =

41 let res = match_with f {v = x; dv = T.c 1.0; ddv = T.c 0.0} forward in



A.7. Higher Derivatives 197

42 T.( *. ) (T.c 2.0) res.ddv

43 end

Listing A.22: Hessian reverse mode (Frank)
1 include prelude

2 include map

3 include set

4 include smooth

5
6 data Name = name Int

7
8 getValue : Name -> Int

9 getValue (name i) = i

10
11 interface Fresh = fresh : Name

12
13 incrementName : Int -> <Fresh > X -> X

14 incrementName _ x = x

15 incrementName i <fresh -> k> = incrementName (i + 1) (k (name i))

16
17 data Tagged X = tagged X Name

18
19 v : Tagged X -> X

20 v ( tagged x _) = x

21
22 tag : Tagged X -> Name

23 tag ( tagged _ t) = t

24
25 data NamePair = namePair Name Name

26
27 makeNamePair : Name -> Name -> NamePair

28 makeNamePair n m = if ( getValue n < getValue m) { namePair n m} { namePair m n}

29
30 ltEq : Int -> Int -> Bool

31 ltEq x y = or (x < y) ( eqInt x y)

32
33 allNamePairs : Set Name -> List (Pair Name Name)

34 allNamePairs s =

35 let xs = setToList s in

36 filter {( pair x y) -> ltEq ( getValue x) ( getValue y)}

37 ( concat (map {x -> map {y -> pair x y} xs} xs ))

38
39 eqName : Name -> Name -> Bool

40 eqName (name x) (name y) = eqInt x y

41
42 eqNamePair : NamePair -> NamePair -> Bool

43 eqNamePair ( namePair n m) ( namePair n’ m ’) = and ( eqName n n ’) ( eqName m m ’)

44
45 concatMaybe : List ( Maybe X) -> List X

46 concatMaybe [] = []

47 concatMaybe ( nothing :: xs) = concatMaybe xs

48 concatMaybe (( just x) :: xs) = x :: concatMaybe xs
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49
50 maybe : X -> Maybe X -> X

51 maybe x nothing = x

52 maybe _ (just v) = v

53
54 fmap : {X -> Y} -> Maybe X -> Maybe Y

55 fmap _ nothing = nothing

56 fmap f (just x) = just (f x)

57
58 foreach : List X -> {X -> Unit} -> Unit

59 foreach [] _ = unit

60 foreach (x :: xs) f = f x; foreach xs f

61
62 saveAndUpdate : Ref (Set Name [ Smooth X, RefState ])

63 -> Ref (Map Name X [ Smooth X, RefState ])

64 -> Ref (Map NamePair X [ Smooth X, RefState ])

65 -> Tagged X

66 -> List ( Tagged X)

67 -> [ Smooth X, RefState ] Pair X (Map Name X [ Smooth X, RefState ])

68 saveAndUpdate s a h res deps =

69 let w = maybe (c 0.0) ( mapLookup (tag res) @a) in

70 a := mapUpdate (pair (tag res) (c 0.0)) @a;

71 let r = makeMap eqName (

72 concatMaybe (map

73 {v ->

74 let temp = mapLookup ( makeNamePair v (tag res )) @h in

75 h := mapUpdate (pair ( makeNamePair v (tag res )) (c 0.0)) @h;

76 fmap {z -> pair v z} temp

77 } ( setToList @s ))

78 ) in

79 s := setRemove (tag res) @s;

80 foreach deps {dep -> s := setAdd (tag dep) @s };

81 a := mapRestrict ( setToList @s) @a;

82 h := mapRestrict (

83 let ss = setToList @s in

84 concat (map {n -> map {m -> makeNamePair n m} ss} ss)

85 ) @h;

86 pair w r

87
88 reverseHessian : Ref (Set Name [ Smooth X, Fresh , RefState ])

89 -> Ref (Map Name X [ Smooth X, Fresh , RefState ])

90 -> Ref (Map NamePair X [ Smooth X, Fresh , RefState ])

91 -> <Smooth ( Tagged X)> Unit

92 -> [ Smooth X, Fresh , RefState ] Unit

93 reverseHessian _ _ _ x = x

94 reverseHessian s a h <ap0 n -> k> =

95 reverseHessian s a h (k ( tagged (<Smooth > (ap0 n)) fresh !))

96 reverseHessian s a h <ap1 u ( tagged x dx) -> k> =

97 let res = tagged (ap1 u x) fresh ! in

98 reverseHessian s a h (k res );

99 let wr = saveAndUpdate s a h res [ tagged x dx] in

100 let w = fst wr in

101 let r = snd wr in



A.7. Higher Derivatives 199

102 let ax = maybe (c 0.0) ( mapLookup dx @a) in

103 a := mapUpdate (pair dx (p ax (t (der1 u x) w))) @a;

104 foreach ( allNamePairs @s)

105 {p’ ->

106 let n1 = fst p’ in

107 let n2 = snd p’ in

108 let key = makeNamePair n1 n2 in

109 let h12 = maybe (c 0.0) ( mapLookup key @h) in

110 let r1 = maybe (c 0.0) ( mapLookup n1 r) in

111 let r2 = maybe (c 0.0) ( mapLookup n2 r) in

112 let rres = maybe (c 0.0) ( mapLookup (tag res) r) in

113 let n1Dep = eqName dx n1 in

114 let n2Dep = eqName dx n2 in

115 case (pair n1Dep n2Dep )

116 { (pair true true) ->

117 h := mapUpdate (pair key

118 (p h12

119 (p (t (c 2.0) (t (der1 u x) r1 ))

120 (p (t (der1 u x) (t (der1 u x) rres ))

121 (t ( dder1 u x) w)

122 )

123 )

124 )

125 ) @h

126 | (pair true false ) ->

127 h := mapUpdate (pair key (p h12 (t (der1 u x) r2 ))) @h

128 | (pair false true) ->

129 h := mapUpdate (pair key (p h12 (t (der1 u x) r1 ))) @h

130 | (pair false false ) -> unit

131 }

132 }

133 reverseHessian s a h <ap2 b ( tagged x dx) ( tagged y dy) -> k> =

134 let res = tagged (ap2 b x y) fresh ! in

135 reverseHessian s a h (k res );

136 let wr = saveAndUpdate s a h res [ tagged x dx , tagged y dy] in

137 let w = fst wr in

138 let r = snd wr in

139 let ax = maybe (c 0.0) ( mapLookup dx @a) in

140 a := mapUpdate (pair dx (p ax (t (der2 L b x y) w))) @a;

141 let ay = maybe (c 0.0) ( mapLookup dy @a) in

142 a := mapUpdate (pair dy (p ay (t (der2 R b x y) w))) @a;

143 foreach ( allNamePairs @s)

144 {p’ ->

145 let n1 = fst p’ in

146 let n2 = snd p’ in

147 let key = makeNamePair n1 n2 in

148 let h12 = maybe (c 0.0) ( mapLookup key @h) in

149 let r1 = maybe (c 0.0) ( mapLookup n1 r) in

150 let r2 = maybe (c 0.0) ( mapLookup n2 r) in

151 let rres = maybe (c 0.0) ( mapLookup (tag res) r) in

152 let n1Dep = or ( eqName dx n1) ( eqName dy n1) in

153 let n2Dep = or ( eqName dx n2) ( eqName dy n2) in

154 let a1 = if ( eqName dx n1) {L} {R} in
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155 let a2 = if ( eqName dx n2) {L} {R} in

156 let same = eqName dx dy in

157 let dsame = p (der2 L b x y) (der2 R b x y) in

158 case (pair n1Dep n2Dep )

159 { (pair true true) ->

160 if same

161 { h := mapUpdate (pair key

162 (p h12

163 (p (p (t dsame r2) (t dsame r1 ))

164 (p (t dsame (t dsame rres ))

165 (t ( dder2 true a1 a2 b x y) w))

166 )

167 )

168 ) @h

169 }

170 { h := mapUpdate (pair key

171 (p h12

172 (p (p (t (der2 a1 b x y) r2)

173 (t (der2 a2 b x y) r1 ))

174 (p (t (der2 a1 b x y) (t (der2 a2 b x y) rres ))

175 (t ( dder2 false a1 a2 b x y) w))

176 )

177 )

178 ) @h

179 }

180 | (pair true false ) ->

181 if same

182 { h := mapUpdate (pair key (p h12 (t dsame r2 ))) @h}

183 { h := mapUpdate

184 (pair key (p h12 (t (der2 a1 b x y) r2 ))) @h

185 }

186 | (pair false true) ->

187 if same

188 { h := mapUpdate (pair key (p h12 (t dsame r1 ))) @h}

189 { h := mapUpdate

190 (pair key (p h12 (t (der2 a2 b x y) r1 ))) @h

191 }

192 | (pair false false ) -> unit

193 }

194 }

195
196 length : List X -> Int

197 length [] = 0

198 length (_ :: xs) = 1 + length xs

199
200 hessian : { List ( Tagged X)

201 -> [RefState , Smooth X, Smooth ( Tagged X)] ( Tagged X)}

202 -> List X -> [RefState , Smooth X] List (List ( Maybe X))

203 hessian f xs =

204 incrementName (1 - length xs) (

205 let z = map {x -> tagged x fresh !} xs in

206 let s = new ( makeSet eqName []) in

207 let a = new ( makeMap eqName []) in
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208 let h = new ( makeMap eqNamePair []) in

209 reverseHessian s a h (

210 let res = <Fresh > (f z) in

211 s := <Smooth > ( setAdd (tag res) @s );

212 a := <Smooth > ( mapUpdate (pair (tag res) (c 1.0)) @a );

213 h := <Smooth >

214 ( mapUpdate (pair ( makeNamePair (tag res) (tag res )) (c 0.0)) @h)

215 );

216 map {r -> map {c -> mapLookup ( makeNamePair (tag r) (tag c)) @h} z} z

217 )

Listing A.23: Hessian reverse mode (Eff)
1 type name = Name of int

2
3 let get_value (Name i) = i

4
5 type fresh = effect

6 operation fresh : unit -> name

7 end ;;

8
9 let increment_name t init = handler

10 | t# fresh () k -> (fun i -> k (Name i) (i + 1))

11 | val x -> (fun _ -> x)

12 | finally f -> f init ;;

13
14 type ’a tagged = Tag of ’a * name ;;

15
16 let tag (Tag (_, t)) = t;;

17
18 let get_val (Tag (v, _)) = v;;

19
20 type name_pair = Name_Pair of name * name ;;

21
22 let fst_name ( Name_Pair (n, _)) = n;;

23
24 let snd_name ( Name_Pair (_, m)) = m;;

25
26 let make_name_pair n m =

27 if get_value n < get_value m then Name_Pair (n, m) else Name_Pair (m, n);;

28
29 let concat xss = fold_right (@) xss [];;

30
31 let all_name_pairs s =

32 let xs = set_to_list s in

33 filter (fun (x, y) -> get_value x <= get_value y)

34 ( concat (map (fun x -> map (fun y -> (x, y)) xs) xs ));;

35
36 let rec concat_option ms =

37 match ms with

38 | [] -> []

39 | (None :: ns) -> concat_option ns

40 | (Some x :: ns) -> x :: concat_option ns ;;
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41
42 let option x m =

43 match m with

44 | None -> x

45 | Some y -> y;;

46
47 let fmap f m =

48 match m with

49 | None -> None

50 | Some x -> Some (f x);;

51
52 let rec foreach xs f = match xs with

53 | [] -> ()

54 | x :: ys -> ignore (f x); foreach ys f;;

55
56 let reverse_hessian i o f s a h =

57 let c x = o#ap0 ( Const x) in

58 let ( ~- ) x = o#ap1 (Negate , x) in

59 let ( + ) x y = o#ap2 (Add , x, y) in

60 let ( * ) x y = o#ap2 (Multiply , x, y) in

61 let save_and_update res deps =

62 let w = option (c 0.0) ( map_lookup (tag res) !a) in

63 a := map_update (tag res , c 0.0) !a;

64 let r = make_map (=) (

65 concat_option (map (fun v ->

66 let temp = map_lookup ( make_name_pair v (tag res )) !h in

67 h := map_update ( make_name_pair v (tag res), c 0.0) !h;

68 fmap (fun z -> (v, z)) temp

69 ) ( set_to_list !s))

70 ) in

71 s := set_remove (tag res) !s;

72 foreach deps (fun dep -> s := set_add (tag dep) !s);

73 a := map_restrict ( set_to_list !s) !a;

74 h := map_restrict (

75 let ss = set_to_list !s in

76 concat (map (fun n -> map (fun m -> make_name_pair n m) ss) ss)

77 ) !h;

78 (w, r)

79 in

80 handler

81 | i#ap0 n k ->

82 k (Tag (op0 o n, f# fresh ()))

83 | i#ap1 (u, Tag (x, dx )) k ->

84 let res = Tag (op1 o u x, f# fresh ()) in

85 k res;

86 let (w, r) = save_and_update res [Tag (x, dx )] in

87 let ax = option (c 0.0) ( map_lookup dx !a) in

88 a := map_update (dx , ax + (der1 o u x * w)) !a;

89 foreach ( all_name_pairs !s) (fun p ->

90 let (n1 , n2) = p in

91 let key = make_name_pair n1 n2 in

92 let h12 = option (c 0.0) ( map_lookup key !h) in

93 let r1 = option (c 0.0) ( map_lookup n1 r) in
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94 let r2 = option (c 0.0) ( map_lookup n2 r) in

95 let rres = option (c 0.0) ( map_lookup (tag res) r) in

96 let n1_dep = (dx = n1) in

97 let n2_dep = (dx = n2) in

98 match (n1_dep , n2_dep ) with

99 | (true , true) ->

100 h := map_update (key ,

101 h12 + ((c 2.0 * (der1 o u x * r1 ))

102 + (( der1 o u x * (der1 o u x * rres ))

103 + ( dder1 o u x * w)

104 )

105 )

106 ) !h

107 | (true , false ) ->

108 h := map_update (key , h12 + (der1 o u x * r2 )) !h

109 | (false , true) ->

110 h := map_update (key , h12 + (der1 o u x * r1 )) !h

111 | (false , false ) -> ()

112 )

113 | i#ap2 (b, Tag (x, dx), Tag (y, dy )) k ->

114 let res = Tag (op2 o b x y, f# fresh ()) in

115 k res;

116 let (w, r) = save_and_update res [Tag (x, dx ); Tag (y, dy )] in

117 let ax = option (c 0.0) ( map_lookup dx !a) in

118 a := map_update (dx , ax + (der2 o b L x y * w)) !a;

119 let ay = option (c 0.0) ( map_lookup dy !a) in

120 a := map_update (dy , ay + (der2 o b R x y * w)) !a;

121 foreach ( all_name_pairs !s) (fun p ->

122 let (n1 , n2) = p in

123 let key = make_name_pair n1 n2 in

124 let h12 = option (c 0.0) ( map_lookup key !h) in

125 let r1 = option (c 0.0) ( map_lookup n1 r) in

126 let r2 = option (c 0.0) ( map_lookup n2 r) in

127 let rres = option (c 0.0) ( map_lookup (tag res) r) in

128 let n1_dep = (dx = n1) || (dy = n1) in

129 let n2_dep = (dx = n2) || (dy = n2) in

130 let a1 = if (dx = n1) then L else R in

131 let a2 = if (dx = n2) then L else R in

132 let same = (dx = dy) in

133 let dsame = der2 o b L x y + der2 o b R x y in

134 match (n1_dep , n2_dep ) with

135 | (true , true) ->

136 if same then

137 h := map_update (key ,

138 h12 + (

139 (( dsame * r2) + ( dsame * r1 ))

140 +

141 (( dsame * ( dsame * rres )) + ( dder2 o b true a1 a2 x y * w))

142 )

143 ) !h

144 else

145 h := map_update (key ,

146 h12 + (
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147 (( der2 o b a1 x y * r2) + (der2 o b a2 x y * r1 ))

148 +

149 ( (der2 o b a1 x y * (der2 o b a2 x y * rres ))

150 +

151 ( dder2 o b false a1 a2 x y * w)

152 )

153 )

154 ) !h

155 | (true , false ) ->

156 if same then h := map_update (key , h12 + ( dsame * r2 )) !h

157 else h := map_update (key , h12 + (der2 o b a1 x y * r2 )) !h

158 | (false , true) ->

159 if same then h := map_update (key , h12 + ( dsame * r1 )) !h

160 else h := map_update (key , h12 + (der2 o b a2 x y * r1 )) !h

161 | (false , false ) -> ()

162 )

163 | val x -> x;;

164
165 let hessian i o t f xs =

166 with increment_name t (1 - length xs) handle

167 let z = map (fun x -> Tag (x, t# fresh ())) xs in

168 let s = ref ( make_set (=) []) in

169 let a = ref ( make_map (=) []) in

170 let h = ref ( make_map (=) []) in

171 let _ = with reverse_hessian i o t s a h handle (

172 let res = f i z in

173 s := set_add (tag res) !s;

174 a := map_update (tag res , op0 o ( Const 1.0)) !a;

175 h := map_update ( make_name_pair (tag res) (tag res), op0 o ( Const 0.0)) !h

176 ) in

177 map (fun r ->

178 map (fun c ->

179 map_lookup ( make_name_pair (tag r) (tag c)) !h

180 ) z

181 ) z;;

Listing A.24: Hessian reverse mode (Koka)
1 pub module hessian

2
3 import smooth

4 import map

5 import set

6
7 infixl 6 (+.)

8 infixl 7 (*.)

9
10 fun show(x : float64 ) : string {

11 show(x : float64 , -17)

12 }

13
14 struct name{get - value : int}

15
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16 fun show(n : name) : string {

17 "n(" ++ show(n.get - value ) ++ ")"

18 }

19
20 effect fresh

21 fun fresh () : name

22
23 fun increment -name(init , action ) {

24 var i := init

25 with handler

26 fun fresh () -> {val t = i; i := i + 1; Name(t)}

27 action ()

28 }

29
30 struct name -pair{fst : name; snd : name}

31
32 fun show(n : name -pair) : string {

33 "(" ++ show(n.fst) ++ ", " ++ show(n.snd) ++ ")"

34 }

35
36 fun make -name -pair(n : name , m : name) : name -pair {

37 if n.get - value < m.get - value then Name -pair(n, m) else Name -pair(m, n)

38 }

39
40 fun all -name - pairs (s) {

41 with x <- s.to -list. flatmap

42 with y <- s.to -list.flatmap - maybe

43 if x.get - value > y.get - value then Nothing else Just ((x,y))

44 }

45
46 fun eq -name -pair(p : name -pair , q : name -pair) {

47 eq -name(p.fst , q.fst) && eq -name(p.snd , q.snd)

48 }

49
50 fun eq -name(x : name , y : name) : bool {

51 x.get - value == y.get - value

52 }

53
54 type tagged <a>

55 Tag(v : a, tag : name)

56
57 fun reverse - hessian (

58 s : ref <h,set <name >>,

59 a : ref <h,map <name ,float64 >>,

60 h : ref <h,map <name -pair ,float64 >>,

61 action : (

62 () -> <

63 div ,

64 st <h>,

65 fresh ,

66 smooth <tagged <float64 >>,

67 smooth <float64 >

68 |e> ()
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69 )

70 ) : <console ,div ,st <h>,fresh ,smooth <float64 >|e> () {

71 fun save -and - update (res , deps : list <tagged <float64 >>) {

72 // Save needed values

73 val w = (!a). lookup (res.tag ). maybe (c (0.0))

74 a := (!a). update (res.tag , c (0.0))

75 val r = make -map(

76 eq -name ,

77 (!s).to -list.map(fn(v) {

78 val temp = (!h). lookup (make -name -pair(v,res.tag ))

79 h := (!h). update (make -name -pair(v,res.tag), c (0.0))

80 temp.map(fn(z) {(v, z)})

81 }). concat - maybe

82 )

83 // Update live variables and restrict maps

84 s := (!s). remove (res.tag)

85 foreach (deps) fn(dep)

86 s := (!s). add(dep.tag)

87 a := (!a). restrict ((!s).to -list)

88 h := (!h). restrict (({

89 with n <- (!s).to -list.map

90 with m <- (!s).to -list.map

91 make -name -pair(n,m)

92 })(). concat )

93 (w, r)

94 }

95 with handler {

96 ctl ap0(n) -> resume (Tag(op0(n), fresh ()))

97 ctl ap1(u,x) ->

98 val res = Tag(op1(u,x.v), fresh ())

99 resume (res)

100 val (w, r) = save -and - update (res , [x])

101 // Update Adjoint

102 val ax = (!a). lookup (x.tag ). maybe (c (0.0))

103 a := (!a). update (x.tag , ax +. (der1(u,x.v) *. w))

104 // Update Hessian

105 foreach (all -name - pairs (!s)) fn(p)

106 val (n1 , n2) = p

107 val k = make -name -pair(n1 ,n2)

108 val h12 = (!h). lookup (k). maybe (c (0.0))

109 val r1 = r. lookup (n1 ). maybe (c (0.0))

110 val r2 = r. lookup (n2 ). maybe (c (0.0))

111 val rres = r. lookup (res.tag ). maybe (c (0.0))

112 val n1 -dep = eq -name(x.tag ,n1)

113 val n2 -dep = eq -name(x.tag ,n2)

114 if n1 -dep && n2 -dep then

115 // So n1 == n2

116 h := (!h). update (k,

117 h12 +. (c (2.0) *. der1(u,x.v) *. r1)

118 +. (der1(u,x.v) *. der1(u,x.v) *. rres)

119 +. ( dder1 (u,x.v) *. w)

120 )

121 elif n1 -dep then



A.7. Higher Derivatives 207

122 h := (!h). update (k, h12 +. (der1(u,x.v) *. r2 ))

123 elif n2 -dep then

124 h := (!h). update (k, h12 +. (der1(u,x.v) *. r1 ))

125 else

126 ()

127 ctl ap2(b,x,y) ->

128 val res = Tag(op2(b,x.v,y.v), fresh ())

129 resume (res)

130 val (w, r) = save -and - update (res , [x,y])

131 // Update Adjoint

132 val ax = (!a). lookup (x.tag ). maybe (c (0.0))

133 a := (!a). update (x.tag , ax +. (der2(b,L,x.v,y.v) *. w))

134 val ay = (!a). lookup (y.tag ). maybe (c (0.0))

135 a := (!a). update (y.tag , ay +. (der2(b,R,x.v,y.v) *. w))

136 // Update Hessian

137 foreach (all -name - pairs (!s)) fn(p)

138 val (n1 , n2) = p

139 val k = make -name -pair(n1 ,n2)

140 val h12 = (!h). lookup (k). maybe (c (0.0))

141 val r1 = r. lookup (n1 ). maybe (c (0.0))

142 val r2 = r. lookup (n2 ). maybe (c (0.0))

143 val rres = r. lookup (res.tag ). maybe (c (0.0))

144 val n1 -dep = eq -name(x.tag ,n1) || eq -name(y.tag ,n1)

145 val n2 -dep = eq -name(x.tag ,n2) || eq -name(y.tag ,n2)

146 val a1 = if eq -name(x.tag ,n1) then L else R

147 val a2 = if eq -name(x.tag ,n2) then L else R

148 val same = eq -name(x.tag ,y.tag)

149 val dsame = der2(b,L,x.v,y.v) +. der2(b,R,x.v,y.v)

150 if n1 -dep && n2 -dep then

151 if same then

152 h := (!h). update (k,

153 h12 +. ( dsame *. r2)

154 +. ( dsame *. r1)

155 +. ( dsame *. dsame *. rres)

156 +. ( dder2 (b,True ,a1 ,a2 ,x.v,y.v) *. w)

157 )

158 else

159 h := (!h). update (k,

160 h12 +. (der2(b,a1 ,x.v,y.v) *. r2)

161 +. (der2(b,a2 ,x.v,y.v) *. r1)

162 +. (der2(b,a1 ,x.v,y.v) *. der2(b,a2 ,x.v,y.v) *. rres)

163 +. ( dder2 (b,False ,a1 ,a2 ,x.v,y.v) *. w)

164 )

165 elif n1 -dep then

166 if same then h := (!h). update (k, h12 +. ( dsame *. r2 ))

167 else h := (!h). update (k, h12 +. (der2(b,a1 ,x.v,y.v) *. r2 ))

168 elif n2 -dep then

169 if same then h := (!h). update (k, h12 +. ( dsame *. r1 ))

170 else h := (!h). update (k, h12 +. (der2(b,a2 ,x.v,y.v) *. r1 ))

171 else

172 ()

173 }

174 with mask <console >
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175 action ()

176 }

177
178 fun hessian (

179 f : (

180 (list <tagged <float64 >>) -> <

181 st <h>,

182 smooth <tagged <float64 >>,

183 smooth <float64 >,

184 div

185 |e> tagged <float64 >),

186 xs : list <float64 >

187 ) : <st <h>,smooth <float64 >,div , console |e> list <list <maybe <float64 >>> {

188 with increment -name (1 - xs. length )

189 val z = map(xs , fn(x) {Tag(x, fresh ())})

190 val s = ref(make -set(eq -name ,[]))

191 val a = ref(make -map(eq -name ,[]))

192 val h = ref(make -map(eq -name -pair ,[]))

193 reverse - hessian (s,a,h) {

194 with mask <fresh >

195 val res = f(z)

196 s := (!s). add(res.tag)

197 a := (!a). update (res.tag , mask <smooth >{c (1.0)})

198 h := (!h). update (make -name -pair(res.tag ,res.tag), mask <smooth >{c (0.0)})

199 }

200 with r <- z.map

201 with c <- z.map

202 (!h). lookup (make -name -pair(r.tag ,c.tag ))

203 }

Listing A.25: Hessian reverse mode (OCaml)
1 open Effect .Deep

2 open Effect

3 open Smooth

4 open Option

5
6 type name = { get_value : int}

7
8 module type FRESH = sig

9 type _ Effect .t += Fresh : unit -> name Effect .t

10
11 val fresh : unit -> name

12 end

13
14 module Fresh : FRESH = struct

15 type _ Effect .t += Fresh : unit -> name Effect .t

16
17 let fresh () = perform ( Fresh ())

18 end

19
20 type name_pair = Name_Pair of name * name

21
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22 let make_name_pair n m =

23 if n. get_value < m. get_value then Name_Pair (n, m) else Name_Pair (m, n)

24
25 module Names =

26 struct

27 type t = name

28 let compare n m = Stdlib . compare n. get_value m. get_value

29 end

30
31 module Name_Set = Set.Make( Names )

32 module Name_Map = Map.Make( Names )

33
34 let all_name_pairs s =

35 let xs = Name_Set . to_seq s in

36 Seq. filter (fun (n, m) -> n. get_value <= m. get_value ) (Seq. product xs xs)

37
38 module Name_Pairs =

39 struct

40 type t = name_pair

41 let compare ( Name_Pair (n0 , n1 )) ( Name_Pair (m0 ,m1 )) =

42 match Stdlib . compare n0 m0 with

43 0 -> Stdlib . compare n1 m1

44 | c -> c

45 end

46
47 module Name_Pair_Map = Map.Make( Name_Pairs )

48
49 type ’t tagged = {v : ’t; tag : name}

50
51 module Hessian (T : SMOOTH ) (F : FRESH ) = struct

52 include Smooth ( struct type t = T.t tagged end)

53 include Fresh

54
55 let increment_name init =

56 let i = ref init in {

57 retc = (fun x -> x);

58 exnc = raise ;

59 effc = (fun (type a) (eff : a Effect .t) ->

60 match eff with

61 | Fresh () -> Some (fun (k : (a, _) continuation ) ->

62 let t = !i in

63 i := !i + 1;

64 continue k { get_value = t}

65 )

66 | _ -> None

67 )

68 }

69
70 let reverse_hessian s a h =

71 let save_and_update res deps =

72 let open T in

73 let w = value ( Name_Map . find_opt res.tag !a) ~ default :(c 0.0) in

74 a := Name_Map .add res.tag (c 0.0) !a;
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75 let r = Name_Map . of_seq (

76 Seq. concat_map (fun v ->

77 let temp = Name_Pair_Map . find_opt ( make_name_pair v res.tag) !h in

78 h := Name_Pair_Map .add ( make_name_pair v res.tag) (c 0.0) !h;

79 Seq.map (fun z -> (v, z)) ( to_seq temp)

80 ) ( Name_Set . to_seq !s)

81 ) in

82 s := Name_Set . remove res.tag !s;

83 List.iter (fun dep -> s := Name_Set .add dep.tag !s) deps;

84 a := Name_Map . filter (fun k _ -> Name_Set .mem k !s) !a;

85 let pairs =

86 let xs = Name_Set . to_seq !s in

87 Seq.map (fun (n, m) -> make_name_pair n m) (Seq. product xs xs)

88 in

89 h := Name_Pair_Map . filter

90 (fun k _ -> Seq. exists (fun k’ -> k’ = k) pairs ) !h;

91 (w, r)

92 in {

93 retc = (fun x -> x);

94 exnc = raise ;

95 effc = (fun (type b) (eff : b Effect .t) ->

96 match eff with

97 | Ap0 n -> Some (fun (k : (b, _) continuation ) ->

98 let open T in

99 let open F in

100 continue k {v = op0 n; tag = fresh ()}

101 )

102 | Ap1 (u, x) -> Some (fun k ->

103 let open T in

104 let open F in

105 let res = {v = op1 u x.v; tag = fresh ()} in

106 continue k res;

107 let (w, r) = save_and_update res [x] in

108 let ax = value ( Name_Map . find_opt x.tag !a) ~ default :(c 0.0) in

109 a := Name_Map .add x.tag (ax +. (der1 u x.v *. w)) !a;

110 Seq.iter (fun (n1 , n2) ->

111 let key = make_name_pair n1 n2 in

112 let h12 =

113 value ( Name_Pair_Map . find_opt key !h) ~ default :(c 0.0) in

114 let r1 = value ( Name_Map . find_opt n1 r) ~ default :(c 0.0) in

115 let r2 = value ( Name_Map . find_opt n2 r) ~ default :(c 0.0) in

116 let rres = value ( Name_Map . find_opt res.tag r) ~ default :(c 0.0) in

117 let n1_dep = (x.tag = n1) in

118 let n2_dep = (x.tag = n2) in

119 match (n1_dep , n2_dep ) with

120 | (true , true) ->

121 h := Name_Pair_Map .add key (

122 h12 +. (c 2.0 *. der1 u x.v *. r1)

123 +. (der1 u x.v *. der1 u x.v *. rres)

124 +. ( dder1 u x.v *. w)

125 ) !h

126 | (true , false ) ->

127 h := Name_Pair_Map .add key (h12 +. (der1 u x.v *. r2 )) !h
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128 | (false , true) ->

129 h := Name_Pair_Map .add key (h12 +. (der1 u x.v *. r1 )) !h

130 | (false , false ) -> ()

131 ) ( all_name_pairs !s)

132 )

133 | Ap2 (b, x, y) -> Some (fun k ->

134 let open T in

135 let open F in

136 let res = {v = op2 b x.v y.v; tag = fresh ()} in

137 continue k res;

138 let (w, r) = save_and_update res [x; y] in

139 let ax = value ( Name_Map . find_opt x.tag !a) ~ default :(c 0.0) in

140 a := Name_Map .add x.tag (ax +. (der2 b L x.v y.v *. w)) !a;

141 let ay = value ( Name_Map . find_opt y.tag !a) ~ default :(c 0.0) in

142 a := Name_Map .add y.tag (ay +. (der2 b R x.v y.v *. w)) !a;

143 Seq.iter (fun (n1 , n2) ->

144 let key = make_name_pair n1 n2 in

145 let h12 =

146 value ( Name_Pair_Map . find_opt key !h) ~ default :(c 0.0) in

147 let r1 = value ( Name_Map . find_opt n1 r) ~ default :(c 0.0) in

148 let r2 = value ( Name_Map . find_opt n2 r) ~ default :(c 0.0) in

149 let rres = value ( Name_Map . find_opt res.tag r) ~ default :(c 0.0) in

150 let n1_dep = (x.tag = n1) || (y.tag = n1) in

151 let n2_dep = (x.tag = n2) || (y.tag = n2) in

152 let a1 = if x.tag = n1 then L else R in

153 let a2 = if x.tag = n2 then L else R in

154 let same = (x.tag = y.tag) in

155 let dsame = der2 b L x.v y.v +. der2 b R x.v y.v in

156 match (n1_dep , n2_dep ) with

157 | (true , true) ->

158 if same then

159 h := Name_Pair_Map .add key (

160 h12 +. ( dsame *. r2)

161 +. ( dsame *. r1)

162 +. ( dsame *. dsame *. rres)

163 +. ( dder2 b true a1 a2 x.v y.v *. w)

164 ) !h

165 else

166 h := Name_Pair_Map .add key (

167 h12 +. (der2 b a1 x.v y.v *. r2)

168 +. (der2 b a2 x.v y.v *. r1)

169 +. (der2 b a1 x.v y.v *. der2 b a2 x.v y.v *. rres)

170 +. ( dder2 b false a1 a2 x.v y.v *. w)

171 ) !h

172 | (true , false ) ->

173 if same then

174 h := Name_Pair_Map .add

175 key (h12 +. ( dsame *. r2 )) !h

176 else

177 h := Name_Pair_Map .add

178 key (h12 +. (der2 b a1 x.v y.v *. r2 )) !h

179 | (false , true) ->

180 if same then
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181 h := Name_Pair_Map .add

182 key (h12 +. ( dsame *. r1 )) !h

183 else

184 h := Name_Pair_Map .add

185 key (h12 +. (der2 b a2 x.v y.v *. r1 )) !h

186 | (false , false ) -> ()

187 ) ( all_name_pairs !s)

188 )

189 | _ -> None

190 )

191 }

192
193 let hessian f xs =

194 match_with (fun () ->

195 let z = List.map (fun x -> {v = x; tag = F. fresh ()}) xs in

196 let s = ref Name_Set . empty in

197 let a = ref Name_Map . empty in

198 let h = ref Name_Pair_Map . empty in

199 let _ = match_with (fun () ->

200 let res = f z in

201 s := Name_Set .add res.tag !s;

202 a := Name_Map .add res.tag (T.c 1.0) !a;

203 h := Name_Pair_Map .add ( make_name_pair res.tag res.tag) (T.c 0.0) !h

204 ) () ( reverse_hessian s a h) in

205 List.map (fun r ->

206 List.map (fun c ->

207 Name_Pair_Map . find_opt ( make_name_pair r.tag c.tag) !h

208 ) z

209 ) z

210 ) () ( increment_name (1 - List. length xs ))

211 end

A.8 Checkpointing

Listing A.26: Checkpointed reverse mode (Eff)
1 type ’a prop = Prop of ’a * ’a ref

2
3 type ’a checkpoint = effect

4 operation checkpoint : (’a prop smooth -> ’a prop) -> ’a prop

5 end

6
7 let rec evaluatet ch i o s =

8 handler

9 | i#ap0 n k ->

10 let r = Prop (op0 o n, s) in k r

11 | i#ap1 (u, Prop (x, _)) k ->

12 let r = Prop (op1 o u x, s) in k r

13 | i#ap2 (b, Prop (x, _), Prop (y, _)) k ->

14 let r = Prop (op2 o b x y, s) in k r

15 | ch# checkpoint p k ->

16 let Prop (res , _) = with evaluatet ch i o s handle p i in
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17 k (Prop (res , s))

18 | val x -> x;;

19
20 let rec reversec ch i o =

21 let c x = o#ap0 ( Const x) in

22 let ( ~- ) x = o#ap1 (Negate , x) in

23 let ( + ) x y = o#ap2 (Add , x, y) in

24 let ( * ) x y = o#ap2 (Multiply , x, y) in

25 handler

26 | i#ap0 n k ->

27 let r = Prop (op0 o n, ref (c 0.0)) in

28 k r

29 | i#ap1 (u, Prop (x, dx )) k ->

30 let dr = ref (c 0.0) in

31 let r = Prop (op1 o u x, dr) in

32 ignore (k r);

33 dx := !dx + (der1 o u x * !dr)

34 | i#ap2 (b, Prop (x, dx), Prop (y, dy )) k ->

35 let dr = ref (c 0.0) in

36 let r = Prop (op2 o b x y, dr) in

37 ignore (k r);

38 dx := !dx + (der2 o b L x y * !dr );

39 dy := !dy + (der2 o b R x y * !dr)

40 | ch# checkpoint p k ->

41 let s = ref (c 0.0) in

42 let Prop (res , _) = with evaluatet ch i o s handle p i in

43 let Prop (r, dr) = Prop (res , ref (c 0.0)) in

44 k (Prop (r, dr ));

45 with reversec ch i o handle (

46 let Prop (_, dres) = p i in

47 dres := !dr

48 )

49 | val x -> x;;

50
51 let grad ch i o f x =

52 let dz = ref (op0 o ( Const 0.0)) in

53 let z = Prop (x, dz) in

54 ( with reversec ch i o handle

55 let Prop (r, dr) = f ch i z in

56 dr := op0 o ( Const 1.0)

57 );

58 !dz ;;

Listing A.27: Checkpointed reverse mode (Koka)
1 pub module checkpoint

2
3 import smooth

4 import reverse

5
6 rec effect checkpoint <h,a,e> {

7 ctl check (

8 prog : () -> <checkpoint <h,a,e>,smooth <prop <h,a>>,div|e> prop <h,a>
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9 ) : prop <h,a>

10 }

11
12 fun lift(

13 action : () -> <smooth <prop <h,a>>|e> b

14 ) : <smooth <prop <h,a>>, smooth <a >|e> b {

15 (mask <smooth >{

16 mask <smooth >{

17 with handler {

18 return (x) -> fn () {x}

19 ctl ap0(n) -> fn () {

20 (fn(z) {( mask <smooth >{ mask <smooth >{ resume (z )}})()}) (ap0(n))

21 }

22 ctl ap1(u,x) -> fn () {

23 (fn(z) {( mask <smooth >{ mask <smooth >{ resume (z )}})()}) (ap1(u,x))

24 }

25 ctl ap2(b,x,y) -> fn () {

26 (fn(z) {( mask <smooth >{ mask <smooth >{ resume (z )}})()}) (ap2(b,x,y))

27 }

28 }

29 action ()

30 }})()

31 }

32
33 fun evaluatet (

34 s : ref <h,a>,

35 action : (() -> <checkpoint <h,a,e>,div ,smooth <prop <h,a>>,smooth <a >|e> b)

36 )

37 : <div ,smooth <a >|e> b {

38 with handler {

39 ctl check (p) -> {

40 val r = evaluatet (s, {lift{p ()}})

41 resume (r)

42 }

43 }

44 with handler {

45 ctl ap0(n) -> resume (Prop(op0(n), s))

46 ctl ap1(u,x) -> resume (Prop(op1(u,x.v), s))

47 ctl ap2(b,x,y) -> resume (Prop(op2(b,x.v,y.v), s))

48 }

49 action ()

50 }

51
52 fun reversec (

53 action : (

54 () -> <

55 checkpoint <h,a,<st <h >|e>>,

56 div ,

57 smooth <prop <h,a>>,

58 smooth <a>,

59 st <h>

60 |e> ()

61 )
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62 ) : <div ,st <h>,smooth <a >|e> () {

63 with handler {

64 ctl check (p) -> {

65 val s = ref(c (0.0))

66 val res = evaluatet (s, {lift{p ()}})

67 val r = Prop(res.v, ref(c (0.0)))

68 resume (r)

69 reversec {set (( lift{p ()}). dv , !r.dv )}

70 }

71 }

72 with reverse

73 action ()

74 }

75
76 fun gradc (f, x) {

77 val z = Prop(x, ref(c (0.0)))

78 reversec {set ((f(z)).dv , mask <smooth >{c (1.0)})}

79 !z.dv

80 }

Listing A.28: Checkpointed reverse mode (OCaml)
1 open Effect .Deep

2 open Effect

3 open Smooth

4
5 type ’t prop = {v : ’t; dv : ’t ref}

6
7 module type CHECKPOINT = sig

8 type t

9 type _ Effect .t += Checkpoint : (unit -> t prop) -> t prop Effect .t

10
11 val checkpoint : (unit -> t prop) -> t prop

12 end

13
14 module Checkpoint (T : sig type t end) : CHECKPOINT with type t = T.t = struct

15 type t = T.t

16 type _ Effect .t += Checkpoint : (unit -> t prop) -> t prop Effect .t

17
18 let checkpoint p = perform ( Checkpoint p)

19 end

20
21 module Reverse_checkpoint (T : SMOOTH ) = struct

22 include Smooth ( struct type t = T.t prop end)

23 include Checkpoint ( struct type t = T.t end)

24
25 let rec evaluatet s = {

26 retc = (fun x -> x);

27 exnc = raise ;

28 effc = (fun (type a) (eff : a Effect .t) ->

29 match eff with

30 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

31 continue k {v = op0 n; dv = s}
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32 )

33 | Ap1 (u, x) -> Some (fun k -> let open T in

34 continue k {v = op1 u x.v; dv = s}

35 )

36 | Ap2 (b, x, y) -> Some (fun k -> (let open T in

37 continue k {v = op2 b x.v y.v; dv = s}

38 ))

39 | Checkpoint p -> Some (fun k -> (

40 let {v = res; dv = _} = match_with p () ( evaluatet s) in

41 continue k {v = res; dv = s}

42 ))

43 | _ -> None

44 )

45 }

46
47 let rec reversec () = {

48 retc = (fun x -> x);

49 exnc = raise ;

50 effc = (fun (type a) (eff : a Effect .t) ->

51 match eff with

52 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

53 continue k {v = op0 n; dv = ref (c 0.0)}

54 )

55 | Ap1 (u, x) -> Some (fun k -> let open T in

56 let r = {v = op1 u x.v; dv = ref (c 0.0)} in

57 continue k r;

58 x.dv := !(x.dv) +. (der1 u x.v *. !(r.dv ))

59 )

60 | Ap2 (b, x, y) -> Some (fun k -> (let open T in

61 let r = {v = op2 b x.v y.v; dv = ref (c 0.0)} in

62 continue k r;

63 x.dv := !(x.dv) +. (der2 b L x.v y.v *. !(r.dv ));

64 y.dv := !(y.dv) +. (der2 b R x.v y.v *. !(r.dv ))

65 ))

66 | Checkpoint p -> Some (fun k -> (let open T in

67 let s = ref (c 0.0) in

68 let res = match_with p () ( evaluatet s) in

69 let r = {v = res.v; dv = ref (c 0.0)} in

70 continue k r;

71 match_with (fun () ->

72 let {v = _; dv = dres} = p () in

73 dres := !(r.dv)

74 ) () ( reversec ())

75 ))

76 | _ -> None

77 )

78 }

79
80 let grad f x =

81 let r = {v = x; dv = ref (T.c 0.0)} in

82 match_with (fun x -> (f x). dv := T.c 1.0) r ( reversec ());

83 !(r.dv)

84 end
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A.9 Higher-Order Functions

Listing A.29: Higher-order reverse mode (Eff)
1 type ’a prop = Prop of ’a * ’a ref

2
3 type ’a func = Func of ’a prop -> (’a prop * (unit -> unit ))

4
5 type ’a abstraction = effect

6 operation abs : (’a prop smooth -> ’a prop -> ’a prop) -> ’a func

7 operation app : (’a func * ’a prop) -> ’a prop

8 end

9
10 let rec reverseh a i o =

11 let c x = o#ap0 ( Const x) in

12 let ( ~- ) x = o#ap1 (Negate , x) in

13 let ( + ) x y = o#ap2 (Add , x, y) in

14 let ( * ) x y = o#ap2 (Multiply , x, y) in

15 handler

16 | i#ap0 n k ->

17 let r = Prop (op0 o n, ref (c 0.0)) in

18 k r

19 | i#ap1 (u, Prop (x, dx )) k ->

20 let dr = ref (c 0.0) in

21 let r = Prop (op1 o u x, dr) in

22 let (res , bp) = k r in

23 (res , (fun () ->

24 bp ();

25 dx := !dx + (der1 o u x * !dr)

26 ))

27 | i#ap2 (b, Prop (x, dx), Prop (y, dy )) k ->

28 let dr = ref (c 0.0) in

29 let r = Prop (op2 o b x y, dr) in

30 let (res , bp) = k r in

31 (res , (fun () ->

32 bp ();

33 dx := !dx + (der2 o b L x y * !dr );

34 dy := !dy + (der2 o b R x y * !dr)

35 ))

36 | a#abs f k ->

37 let g = (fun x -> with reverseh a i o handle f i x) in

38 k (Func g)

39 | a#app (Func f, x) k ->

40 let (r, br) = f x in

41 let (res , bp) = k r in

42 (res , (fun () -> bp (); br ()))

43 | val x -> (x, (fun () -> ()));;

44
45 let gradh a i o f x =

46 let dz = ref (op0 o ( Const 0.0)) in

47 let z = Prop (x, dz) in

48 let (_, bp) = (with reverseh a i o handle

49 let Prop (r, dr) = f i z in
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50 dr := op0 o ( Const 1.0);

51 Prop (r, dr ))

52 in

53 bp ();

54 !dz ;;

Listing A.30: Higher-order reverse mode (Koka)
1 pub module reverse -higher - order

2
3 import smooth

4 import std/num/ float64

5
6 type prop <h,a> {

7 Prop(v : a, dv : ref <h, a >)

8 }

9
10 rec type bp <h,a,e> {

11 Bp(do : () -> <st <h>,smooth <a>,div|e> ())

12 }

13
14 rec type func <h,a,e> {

15 Func(body : (prop <h,a> -> <st <h>,smooth <a>,div|e> (prop <h,a>, bp <h,a,e >)))

16 }

17
18 rec effect asmooth <h,a,e> {

19 ctl ap0_(n : nullary ) : prop <h,a>

20 ctl ap1_(u : unary , arg : prop <h,a >) : prop <h,a>

21 ctl ap2_(b : binary , arg1 : prop <h,a>, arg2 : prop <h,a >) : prop <h,a>

22 ctl abs_(

23 f : prop <h,a> -> <st <h>,asmooth <h,a,e>,div|e> prop <h,a>

24 ) : func <h,a,e>

25 ctl app_(f : func <h,a,e>, x : prop <h,a >) : prop <h,a>

26 }

27
28 inline fun c__(i : float64 ) {

29 ap0_( Const (i))

30 }

31
32 inline fun (~..)( x) {

33 ap1_(Negate , x)

34 }

35
36 inline fun sin__ (x) {

37 ap1_(Sin , x)

38 }

39
40 inline fun cos__ (x) {

41 ap1_(Cos , x)

42 }

43
44 inline fun exp__ (x) {

45 ap1_(Exp , x)
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46 }

47
48 inline fun (+..)(x, y) {

49 ap2_(Plus , x, y)

50 }

51
52 inline fun ( -..)(x, y) {

53 ap2_(Subtract , x, y)

54 }

55
56 inline fun (*..)(x, y) {

57 ap2_(Times , x, y)

58 }

59
60 inline fun div__ (x, y) {

61 ap2_(Divide , x, y)

62 }

63
64 fun areverse (

65 action : () -> <st <h>,asmooth <h,a,e>,div ,smooth <a >|e> b

66 ) : <st <h>,div ,smooth <a >|e> (b, bp <h,a,e >) {

67 with handler {

68 return (x) -> (x, Bp(fn () {}))

69 ctl ap0_(n) -> {

70 val r = Prop(op0(n), ref(c (0.0)))

71 resume (r)

72 }

73 ctl ap1_(u,x) -> {

74 val r = Prop(op1(u,x.v), ref(c (0.0)))

75 val (a, bp) = resume (r)

76 (a, Bp(fn () {

77 (bp.do )()

78 set(x.dv , !x.dv +. (der1(u,x.v) *. !r.dv ))

79 }))

80 }

81 ctl ap2_(b,x,y) -> {

82 val r = Prop(op2(b,x.v,y.v), ref(c (0.0)))

83 val (a, bp) = resume (r)

84 (a, Bp(fn () {

85 (bp.do )()

86 set(x.dv , !x.dv +. (der2(b,L,x.v,y.v) *. !r.dv ))

87 set(y.dv , !y.dv +. (der2(b,R,x.v,y.v) *. !r.dv ))

88 }))

89 }

90 ctl abs_(f) -> {

91 val g = fn(x) {

92 with areverse

93 mask <smooth >{f(x)}

94 }

95 resume (Func(g))

96 }

97 ctl app_(f,x) -> {

98 val (r, br) = (f.body )(x)
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99 val (res , bres) = resume (r)

100 (res , Bp(fn () {( bres.do )(); (br.do )()}))

101 }

102 }

103 action ()

104 }

105
106 fun grad(

107 f : prop <h,a> -> <st <h>,asmooth <h,a,e>,div ,smooth <a >|e> prop <h,a>,

108 x : a

109 ) : <st <h>,div ,smooth <a >|e> a {

110 val z = Prop(x, ref(c (0.0)))

111 val (_, bp) = areverse {set(f(z).dv , mask <asmooth >{c (1.0)})}

112 (bp.do )()

113 !z.dv

114 }

Listing A.31: Higher-order reverse mode (OCaml)
1 open Effect .Deep

2 open Effect

3 open Smooth

4
5 type ’t prop = {v : ’t; mutable dv : ’t}

6
7 type ’t func = Func of (’t prop -> (’t prop * (unit -> unit )))

8
9 module type LAMBDA = sig

10 type t

11 type _ Effect .t += Abs : (t prop -> t prop) -> t func Effect .t

12 | App : (t func * t prop) -> t prop Effect .t

13
14 val abs : (t prop -> t prop) -> t func

15 val app : (t func * t prop) -> t prop

16 end

17
18 module Lambda (T : sig type t end) : LAMBDA with type t = T.t = struct

19 type t = T.t

20 type _ Effect .t += Abs : (t prop -> t prop) -> t func Effect .t

21 | App : (t func * t prop) -> t prop Effect .t

22
23 let abs f = perform (Abs f)

24 let app fx = perform (App fx)

25 end

26
27 module Reverse_higher_order (T : SMOOTH ) = struct

28 include Smooth ( struct type t = T.t prop end)

29 include Lambda ( struct type t = T.t end)

30
31 let rec reverse = {

32 retc = (fun x -> (x, (fun () -> ())));

33 exnc = raise ;

34 effc = (fun (type a) (eff : a Effect .t) ->
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35 match eff with

36 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

37 continue k {v = op0 n; dv = c 0.0}

38 )

39 | Ap1 (u, x) -> Some (fun k -> let open T in

40 let r = {v = op1 u x.v; dv = c 0.0} in

41 let (res , bp) = continue k r in

42 (res , (fun () ->

43 bp ();

44 x.dv <- x.dv +. (der1 u x.v *. r.dv)

45 ))

46 )

47 | Ap2 (b, x, y) -> Some (fun k -> (let open T in

48 let r = {v = op2 b x.v y.v; dv = c 0.0} in

49 let (res , bp) = continue k r in

50 (res , (fun () ->

51 bp ();

52 x.dv <- x.dv +. (der2 b L x.v y.v *. r.dv );

53 y.dv <- y.dv +. (der2 b R x.v y.v *. r.dv );

54 ))

55 ))

56 | Abs f -> Some (fun k -> (

57 let g = (fun x -> match_with f x reverse ) in

58 continue k (Func g)

59 ))

60 | App (Func f, x) -> Some (fun k -> (

61 let (r, br) = f x in

62 let (res , bp) = continue k r in

63 (res , (fun () -> bp (); br ()))

64 ))

65 | _ -> None

66 )

67 }

68
69 let grad f x =

70 let r = {v = x; dv = T.c 0.0} in

71 let (_, bp) = match_with (fun x ->

72 let res = f x in

73 res.dv <- T.c 1.0;

74 res

75 ) r reverse in

76 bp ();

77 r.dv

78 end

Listing A.32: Higher-order checkpointed reverse mode (Eff)
1 type ’a prop = Prop of ’a * ’a ref

2
3 type ’a func = Func of ’a prop -> (’a prop * (unit -> unit ))

4
5 type ’a abstraction = effect

6 operation abs : (’a prop smooth -> ’a prop -> ’a prop) -> ’a func



222 Appendix A. Programs

7 operation app : (’a func * ’a prop) -> ’a prop

8 end

9
10 let rec evaluatet a i o s =

11 handler

12 | i#ap0 n k ->

13 let r = Prop (op0 o n, s) in k r

14 | i#ap1 (u, Prop (x, _)) k ->

15 let r = Prop (op1 o u x, s) in k r

16 | i#ap2 (b, Prop (x, _), Prop (y, _)) k ->

17 let r = Prop (op2 o b x y, s) in k r

18 | a#abs f k ->

19 let g = (fun x -> with evaluatet a i o s handle f i x) in

20 k (Func g)

21 | a#app (Func f, x) k ->

22 let (r, _) = f x in k r

23 | val x -> (x, (fun () -> ()));;

24
25 let rec reversehc a i o =

26 let c x = o#ap0 ( Const x) in

27 let ( ~- ) x = o#ap1 (Negate , x) in

28 let ( + ) x y = o#ap2 (Add , x, y) in

29 let ( * ) x y = o#ap2 (Multiply , x, y) in

30 handler

31 | i#ap0 n k ->

32 let r = Prop (op0 o n, ref (c 0.0)) in

33 k r

34 | i#ap1 (u, Prop (x, dx )) k ->

35 let dr = ref (c 0.0) in

36 let r = Prop (op1 o u x, dr) in

37 let (res , bp) = k r in

38 (res , (fun () ->

39 bp ();

40 dx := !dx + (der1 o u x * !dr)

41 ))

42 | i#ap2 (b, Prop (x, dx), Prop (y, dy )) k ->

43 let dr = ref (c 0.0) in

44 let r = Prop (op2 o b x y, dr) in

45 let (res , bp) = k r in

46 (res , (fun () ->

47 bp ();

48 dx := !dx + (der2 o b L x y * !dr );

49 dy := !dy + (der2 o b R x y * !dr)

50 ))

51 | a#abs f k ->

52 let g = (fun x ->

53 let dres = ref (c 0.0) in

54 let (Prop (res , _), _) = (with evaluatet a i o dres handle f i x) in

55 (Prop (res , dres), (fun () ->

56 let (_, bp) = (with reversehc a i o handle

57 let Prop (r, dr) = f i x in

58 dr := !dres;

59 Prop (r, dr)
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60 ) in

61 bp ()

62 ))

63 ) in

64 k (Func g)

65 | a#app (Func f, x) k ->

66 let (r, br) = f x in

67 let (res , bp) = k r in

68 (res , (fun () -> bp (); br ()))

69 | val x -> (x, (fun () -> ()));;

70
71 let gradhc a i o f x =

72 let dz = ref (op0 o ( Const 0.0)) in

73 let z = Prop (x, dz) in

74 let (_, bp) = (with reversehc a i o handle

75 let Prop (r, dr) = f i z in

76 dr := op0 o ( Const 1.0);

77 Prop (r, dr ))

78 in

79 bp ();

80 !dz ;;

Listing A.33: Higher-order checkpointed reverse mode (Koka)
1 pub module reverse -higher -order - checkpoint

2
3 import smooth

4 import std/num/ float64

5
6 type prop <h,a> {

7 Prop(v : a, dv : ref <h, a >)

8 }

9
10 rec type bp <h,a,e> {

11 Bp(do : () -> <st <h>,smooth <a>,div|e> ())

12 }

13
14 rec type func <h,a,e> {

15 Func(body : (prop <h,a> -> <st <h>,smooth <a>,div|e> (prop <h,a>, bp <h,a,e >)))

16 }

17
18 rec effect asmooth <h,a,e> {

19 ctl ap0_(n : nullary ) : prop <h,a>

20 ctl ap1_(u : unary , arg : prop <h,a >) : prop <h,a>

21 ctl ap2_(b : binary , arg1 : prop <h,a>, arg2 : prop <h,a >) : prop <h,a>

22 ctl abs_(

23 f : prop <h,a> -> <st <h>,asmooth <h,a,e>,div|e> prop <h,a>

24 ) : func <h,a,e>

25 ctl app_(f : func <h,a,e>, x : prop <h,a >) : prop <h,a>

26 }

27
28 inline fun c__(i : float64 ) {

29 ap0_( Const (i))
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30 }

31
32 inline fun (~..)( x) {

33 ap1_(Negate , x)

34 }

35
36 inline fun sin__ (x) {

37 ap1_(Sin , x)

38 }

39
40 inline fun cos__ (x) {

41 ap1_(Cos , x)

42 }

43
44 inline fun exp__ (x) {

45 ap1_(Exp , x)

46 }

47
48 inline fun (+..)(x, y) {

49 ap2_(Plus , x, y)

50 }

51
52 inline fun ( -..)(x, y) {

53 ap2_(Subtract , x, y)

54 }

55
56 inline fun (*..)(x, y) {

57 ap2_(Times , x, y)

58 }

59
60 inline fun div__ (x, y) {

61 ap2_(Divide , x, y)

62 }

63
64 fun aevaluate (

65 s : ref <h,a>,

66 action : () -> <st <h>,asmooth <h,a,e>,div ,smooth <a >|e> b

67 ) : <st <h>,div ,smooth <a >|e> (b, bp <h,a,e >) {

68 with handler {

69 return (x) -> (x, Bp(fn () {}))

70 ctl ap0_(n) -> {

71 val r = Prop(op0(n), s)

72 resume (r)

73 }

74 ctl ap1_(u,x) -> {

75 val r = Prop(op1(u,x.v), s)

76 resume (r)

77 }

78 ctl ap2_(b,x,y) -> {

79 val r = Prop(op2(b,x.v,y.v), s)

80 resume (r)

81 }

82 ctl abs_(f) -> {
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83 val g = fn(x) {

84 with aevaluate (s)

85 mask <smooth >{f(x)}

86 }

87 resume (Func(g))

88 }

89 ctl app_(f,x) -> {

90 val (r, _) = (f.body )(x)

91 resume (r)

92 }

93 }

94 action ()

95 }

96
97 fun areverse (

98 action : () -> <st <h>,asmooth <h,a,e>,div ,smooth <a >|e> b

99 ) : <st <h>,div ,smooth <a >|e> (b, bp <h,a,e >) {

100 with handler {

101 return (x) -> (x, Bp(fn () {}))

102 ctl ap0_(n) -> {

103 val r = Prop(op0(n), ref(c (0.0)))

104 resume (r)

105 }

106 ctl ap1_(u,x) -> {

107 val r = Prop(op1(u,x.v), ref(c (0.0)))

108 val (a, bp) = resume (r)

109 (a, Bp(fn () {

110 (bp.do )()

111 set(x.dv , !x.dv +. (der1(u,x.v) *. !r.dv ))

112 }))

113 }

114 ctl ap2_(b,x,y) -> {

115 val r = Prop(op2(b,x.v,y.v), ref(c (0.0)))

116 val (a, bp) = resume (r)

117 (a, Bp(fn () {

118 (bp.do )()

119 set(x.dv , !x.dv +. (der2(b,L,x.v,y.v) *. !r.dv ))

120 set(y.dv , !y.dv +. (der2(b,R,x.v,y.v) *. !r.dv ))

121 }))

122 }

123 ctl abs_(f) -> {

124 val g = fn(x) {

125 val s = ref(c (0.0))

126 val (res , _) = aevaluate (s, {mask <smooth >{f(x)}})

127 val r = Prop(res.v, ref(c (0.0)))

128 (r, Bp(fn () {

129 val (_, bp) = areverse {set(mask <smooth >{f(x). dv}, !r.dv )}

130 (bp.do )()

131 }))

132 }

133 resume (Func(g))

134 }

135 ctl app_(f,x) -> {
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136 val (r, br) = (f.body )(x)

137 val (res , bres) = resume (r)

138 (res , Bp(fn () {( bres.do )(); (br.do )()}))

139 }

140 }

141 action ()

142 }

143
144 fun grad(

145 f : prop <h,a> -> <st <h>,asmooth <h,a,e>,div ,smooth <a >|e> prop <h,a>,

146 x : a

147 ) : <st <h>,div ,smooth <a >|e> a {

148 val z = Prop(x, ref(c (0.0)))

149 val (_, bp) = areverse {set(f(z).dv , mask <asmooth >{c (1.0)})}

150 (bp.do )()

151 !z.dv

152 }

Listing A.34: Higher-order checkpointed reverse mode (OCaml)
1 open Effect .Deep

2 open Effect

3 open Smooth

4
5 type ’t prop = {v : ’t; dv : ’t ref}

6
7 type ’t func = Func of (’t prop -> (’t prop * (unit -> unit )))

8
9 module type LAMBDA = sig

10 type t

11 type _ Effect .t += Abs : (t prop -> t prop) -> t func Effect .t

12 | App : (t func * t prop) -> t prop Effect .t

13
14 val abs : (t prop -> t prop) -> t func

15 val app : (t func * t prop) -> t prop

16 end

17
18 module Lambda (T : sig type t end) : LAMBDA with type t = T.t = struct

19 type t = T.t

20 type _ Effect .t += Abs : (t prop -> t prop) -> t func Effect .t

21 | App : (t func * t prop) -> t prop Effect .t

22
23 let abs f = perform (Abs f)

24 let app fx = perform (App fx)

25 end

26
27 module Reverse_higher_order_checkpoint (T : SMOOTH ) = struct

28 include Smooth ( struct type t = T.t prop end)

29 include Lambda ( struct type t = T.t end)

30
31 let rec evaluatet s = {

32 retc = (fun x -> (x, (fun () -> ())));

33 exnc = raise ;
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34 effc = (fun (type a) (eff : a Effect .t) ->

35 match eff with

36 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

37 continue k {v = op0 n; dv = s}

38 )

39 | Ap1 (u, x) -> Some (fun k -> let open T in

40 continue k {v = op1 u x.v; dv = s}

41 )

42 | Ap2 (b, x, y) -> Some (fun k -> (let open T in

43 continue k {v = op2 b x.v y.v; dv = s}

44 ))

45 | Abs f -> Some (fun k -> (

46 let g = (fun x -> match_with f x ( evaluatet s)) in

47 continue k (Func g)

48 ))

49 | App (Func f, x) -> Some (fun k -> (

50 let (r, _) = f x in

51 continue k r

52 ))

53 | _ -> None

54 )

55 }

56 let rec reverse = {

57 retc = (fun x -> (x, (fun () -> ())));

58 exnc = raise ;

59 effc = (fun (type a) (eff : a Effect .t) ->

60 match eff with

61 | Ap0 n -> Some (fun (k : (a, _) continuation ) -> let open T in

62 continue k {v = op0 n; dv = ref (c 0.0)}

63 )

64 | Ap1 (u, x) -> Some (fun k -> let open T in

65 let r = {v = op1 u x.v; dv = ref (c 0.0)} in

66 let (res , bp) = continue k r in

67 (res , (fun () ->

68 bp ();

69 x.dv := !(x.dv) +. (der1 u x.v *. !(r.dv ))

70 ))

71 )

72 | Ap2 (b, x, y) -> Some (fun k -> (let open T in

73 let r = {v = op2 b x.v y.v; dv = ref (c 0.0)} in

74 let (res , bp) = continue k r in

75 (res , (fun () ->

76 bp ();

77 x.dv := !(x.dv) +. (der2 b L x.v y.v *. !(r.dv ));

78 y.dv := !(y.dv) +. (der2 b R x.v y.v *. !(r.dv ));

79 ))

80 ))

81 | Abs f -> Some (fun k -> (let open T in

82 let g = (fun x ->

83 let dres = ref (c 0.0) in

84 let ({v = res; dv = _}, _) = match_with f x ( evaluatet dres) in

85 ({v = res; dv = dres}, (fun () ->

86 let (_, bp) = match_with (fun y ->
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87 let {v = r; dv = dr} = f y in

88 dr := !dres;

89 {v = r; dv = dr}

90 ) x reverse in

91 bp ();

92 ))

93 ) in

94 continue k (Func g)

95 ))

96 | App (Func f, x) -> Some (fun k -> (

97 let (r, br) = f x in

98 let (res , bp) = continue k r in

99 (res , (fun () -> bp (); br ()))

100 ))

101 | _ -> None

102 )

103 }

104
105 let grad f x =

106 let r = {v = x; dv = ref (T.c 0.0)} in

107 let (_, bp) = match_with (fun x ->

108 let res = f x in

109 res.dv := T.c 1.0;

110 res

111 ) r reverse in

112 bp ();

113 !(r.dv)

114 end

A.10 Real World Benchmarks Code

Listing A.35: Smooth effect and helper functions, tensors (OCaml)
1 open Effect

2
3 type u_to_s = Const of float

4 type s_to_s = Negate | Log

5 type s’ s_to_s = Add | Subtract | Multiply | Divide

6
7 type u_to_t = Zeros of int array | Create of int array * float

8 type t_to_t

9 = Squeeze of int array option

10 | Reshape of int array

11 | GetSlice of int list list

12 | SliceLeft of int array

13 | Transpose of int array option

14 | Exp

15 | Negate

16 | PowerConst of float

17 | SumReduce of int array option

18 | LogSumExp of int option * bool option

19 | Softmax of int option
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20 type t’ t_to_t

21 = Add

22 | Subtract

23 | Multiply

24 | Divide

25 | Einsum_ijk_mik_to_mij

26 | Einsum_ijk_mij_to_mik

27 | Einsum_mij_mik_to_ijk

28 | SetSlice of int list list

29
30 type t_to_s = Get of int array | Sum

31 type s’ t_to_t = ScalarMultiply | SubtractScalar

32 type ta_to_t = Concatenate of int option | Stack of int option

33 type t_to_ta = Split of int option * int array

34
35 type arg = L | R

36
37 module type SMOOTH = sig

38 type scalar

39 type tensor

40 type _ Effect .t +=

41 Ap_u_to_s : u_to_s -> scalar Effect .t

42 | Ap_s_to_s : s_to_s * scalar -> scalar Effect .t

43 | Ap_s ’ s_to_s : s’ s_to_s * scalar * scalar -> scalar Effect .t

44 | Ap_u_to_t : u_to_t -> tensor Effect .t

45 | Ap_t_to_t : t_to_t * tensor -> tensor Effect .t

46 | Ap_t ’ t_to_t : t’ t_to_t * tensor * tensor -> tensor Effect .t

47 | Ap_t_to_s : t_to_s * tensor -> scalar Effect .t

48 | Ap_s ’ t_to_t : s’ t_to_t * scalar * tensor -> tensor Effect .t

49 | Ap_ta_to_t : ta_to_t * tensor array -> tensor Effect .t

50 | Ap_t_to_ta : t_to_ta * tensor -> tensor array Effect .t

51
52 val c : float -> scalar

53 val ( ~. ) : scalar -> scalar

54 val log : scalar -> scalar

55 val ( +. ) : scalar -> scalar -> scalar

56 val ( -. ) : scalar -> scalar -> scalar

57 val ( *. ) : scalar -> scalar -> scalar

58 val ( /. ) : scalar -> scalar -> scalar

59
60 (* Non - differentiable operations *)

61 val shape : tensor -> int array

62 val add_ : tensor -> tensor -> unit

63
64 (* Creating constant tensors *)

65 val zeros : int array -> tensor

66 val create : int array -> float -> tensor

67
68 (* Combining tensors *)

69 val concatenate : ?axis:int -> tensor array -> tensor

70 val stack : ?axis:int -> tensor array -> tensor

71
72 (* Splitting tensors *)
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73 val split : ?axis:int -> int array -> tensor -> tensor array

74
75 (* Changing tensor shape *)

76 val transpose : ?axis:int array -> tensor -> tensor

77 val reshape : tensor -> int array -> tensor

78
79 (* Shrinking and slicing tensors *)

80 val squeeze : ?axis:int array -> tensor -> tensor

81 val get_slice : int list list -> tensor -> tensor

82 val slice_left : tensor -> int array -> tensor

83 val get : tensor -> int array -> scalar

84 val set_slice : int list list -> tensor -> tensor -> tensor

85
86 (* Einsum operations *)

87 val einsum_ijk_mik_to_mij : tensor -> tensor -> tensor

88 val einsum_ijk_mij_to_mik : tensor -> tensor -> tensor

89 val einsum_mij_mik_to_ijk : tensor -> tensor -> tensor

90
91 (* Pointwise tensor operations *)

92 val exp : tensor -> tensor

93 val pow_const : tensor -> float -> tensor

94 val ( ~- ) : tensor -> tensor

95 val ( + ) : tensor -> tensor -> tensor

96 val ( - ) : tensor -> tensor -> tensor

97 val ( * ) : tensor -> tensor -> tensor

98 val ( / ) : tensor -> tensor -> tensor

99
100 (* Reduction operations *)

101 val sum : tensor -> scalar

102 val sum_reduce : ?axis:int array -> tensor -> tensor

103 val log_sum_exp : ?axis:int -> ? keep_dims :bool -> tensor -> tensor

104 val softmax : ?axis:int -> tensor -> tensor

105
106 (* Scalar - tensor operations *)

107 val scalar_mul : scalar -> tensor -> tensor

108 val sub_scalar : tensor -> scalar -> tensor

109
110 val op_u_to_s : u_to_s -> scalar

111 val op_s_to_s : s_to_s -> scalar -> scalar

112 val op_s ’ s_to_s : s’ s_to_s -> scalar -> scalar -> scalar

113
114 val op_u_to_t : u_to_t -> tensor

115 val op_t_to_t : t_to_t -> tensor -> tensor

116 val op_t ’ t_to_t : t’ t_to_t -> tensor -> tensor -> tensor

117
118 val op_t_to_s : t_to_s -> tensor -> scalar

119 val op_s ’ t_to_t : s’ t_to_t -> scalar -> tensor -> tensor

120 val op_ta_to_t : ta_to_t -> tensor array -> tensor

121 val op_t_to_ta : t_to_ta -> tensor -> tensor array

122
123 val der_s_to_s : s_to_s -> scalar -> ( scalar -> scalar )

124 val der_s ’ s_to_s : s’ s_to_s -> scalar -> scalar -> ( scalar -> scalar * scalar )

125
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126 val der_t_to_t : t_to_t -> tensor -> ( tensor -> tensor )

127 val der_t ’ t_to_t : t’ t_to_t -> tensor -> tensor -> ( tensor -> tensor * tensor )

128
129 val der_t_to_s : t_to_s -> tensor -> ( scalar -> tensor )

130 val der_s ’ t_to_t : s’ t_to_t -> scalar -> tensor -> ( tensor -> scalar * tensor )

131 val der_ta_to_t : ta_to_t -> tensor array -> ( tensor -> tensor array )

132 val der_t_to_ta : t_to_ta -> tensor -> ( tensor array -> tensor )

133 end

134
135 module type SMOOTH_NON_DIFF = sig

136 type scalar

137 type tensor

138
139 val shape : tensor -> int array

140 val add_ : tensor -> tensor -> unit

141 end

142
143 module Smooth (T : SMOOTH_NON_DIFF ) : SMOOTH

144 with type scalar = T. scalar

145 with type tensor = T. tensor

146 = struct

147 include T

148
149 type scalar = T. scalar

150 type tensor = T. tensor

151 type _ Effect .t +=

152 Ap_u_to_s : u_to_s -> scalar Effect .t

153 | Ap_s_to_s : s_to_s * scalar -> scalar Effect .t

154 | Ap_s ’ s_to_s : s’ s_to_s * scalar * scalar -> scalar Effect .t

155 | Ap_u_to_t : u_to_t -> tensor Effect .t

156 | Ap_t_to_t : t_to_t * tensor -> tensor Effect .t

157 | Ap_t ’ t_to_t : t’ t_to_t * tensor * tensor -> tensor Effect .t

158 | Ap_t_to_s : t_to_s * tensor -> scalar Effect .t

159 | Ap_s ’ t_to_t : s’ t_to_t * scalar * tensor -> tensor Effect .t

160 | Ap_ta_to_t : ta_to_t * tensor array -> tensor Effect .t

161 | Ap_t_to_ta : t_to_ta * tensor -> tensor array Effect .t

162
163 let c s = perform ( Ap_u_to_s ( Const s))

164 let log s = perform ( Ap_s_to_s (Log , s))

165 let ( ~. ) s = perform ( Ap_s_to_s (Negate , s))

166 let ( +. ) s1 s2 = perform (Ap_s ’ s_to_s (Add , s1 , s2 ))

167 let ( -. ) s1 s2 = perform (Ap_s ’ s_to_s (Subtract , s1 , s2 ))

168 let ( *. ) s1 s2 = perform (Ap_s ’ s_to_s (Multiply , s1 , s2 ))

169 let ( /. ) s1 s2 = perform (Ap_s ’ s_to_s (Divide , s1 , s2 ))

170
171 let zeros ia = perform ( Ap_u_to_t ( Zeros ia ))

172 let create ia s = perform ( Ap_u_to_t ( Create (ia , s)))

173 let concatenate ?axis ta = perform ( Ap_ta_to_t ( Concatenate axis , ta ))

174 let stack ?axis ta = perform ( Ap_ta_to_t ( Stack axis , ta ))

175 let split ?axis ia t = perform ( Ap_t_to_ta ( Split (axis , ia), t))

176 let transpose ?axis t = perform ( Ap_t_to_t ( Transpose axis , t))

177 let reshape t d = perform ( Ap_t_to_t ( Reshape d, t))

178 let squeeze ?axis t = perform ( Ap_t_to_t ( Squeeze axis , t))
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179 let get_slice ill t = perform ( Ap_t_to_t ( GetSlice ill , t))

180 let slice_left t ia = perform ( Ap_t_to_t ( SliceLeft ia , t))

181 let get t ia = perform ( Ap_t_to_s (Get ia , t))

182 let set_slice ill t1 t2 = perform (Ap_t ’ t_to_t ( SetSlice ill , t1 , t2 ))

183 let einsum_ijk_mik_to_mij a x =

184 perform (Ap_t ’ t_to_t ( Einsum_ijk_mik_to_mij , a, x))

185 let einsum_ijk_mij_to_mik a y =

186 perform (Ap_t ’ t_to_t ( Einsum_ijk_mij_to_mik , a, y))

187 let einsum_mij_mik_to_ijk y x =

188 perform (Ap_t ’ t_to_t ( Einsum_mij_mik_to_ijk , y, x))

189 let exp t = perform ( Ap_t_to_t (Exp , t))

190 let ( ~- ) t = perform ( Ap_t_to_t (Negate , t))

191 let pow_const t f = perform ( Ap_t_to_t ( PowerConst f,t))

192 let ( + ) t1 t2 = perform (Ap_t ’ t_to_t (Add , t1 , t2 ))

193 let ( - ) t1 t2 = perform (Ap_t ’ t_to_t (Subtract , t1 , t2 ))

194 let ( * ) t1 t2 = perform (Ap_t ’ t_to_t (Multiply , t1 , t2 ))

195 let ( / ) t1 t2 = perform (Ap_t ’ t_to_t (Divide , t1 , t2 ))

196 let sum t = perform ( Ap_t_to_s (Sum , t))

197 let sum_reduce ?axis t = perform ( Ap_t_to_t ( SumReduce axis , t))

198 let log_sum_exp ?axis ? keep_dims t =

199 perform ( Ap_t_to_t ( LogSumExp (axis , keep_dims ), t))

200 let softmax ?axis t = perform ( Ap_t_to_t ( Softmax axis , t))

201 let scalar_mul s t = perform (Ap_s ’ t_to_t ( ScalarMultiply , s, t))

202 let sub_scalar t s = perform (Ap_s ’ t_to_t ( SubtractScalar , s, t))

203
204 (* Simple expand operation . ia contains which axes to expand . *)

205 let _expand t shp ia =

206 let res = ref t in

207 for j = 0 to Stdlib .( Array . length ia - 1) do

208 res := concatenate ~axis :( ia .(j)) ( Array .make shp .( ia .(j)) !res)

209 done;

210 !res

211
212 (* Inverse of a permutation *)

213 let _inv_perm p =

214 let l = Array . length p in

215 let q = Array .make l 0 in

216 for i = 0 to Stdlib .(l - 1) do

217 q.(p.(i)) <- i;

218 done;

219 q

220
221 let op_u_to_s (o : u_to_s ) = match o with

222 | Const x -> c x

223 let op_s_to_s (o : s_to_s ) s = match o with

224 | Negate -> ~. s

225 | Log -> log s

226 let op_s ’ s_to_s (o : s’ s_to_s ) s1 s2 = match o with

227 | Add -> s1 +. s2

228 | Subtract -> s1 -. s2

229 | Multiply -> s1 *. s2

230 | Divide -> s1 /. s2

231
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232 let op_u_to_t (o : u_to_t ) = match o with

233 | Zeros ia -> zeros ia

234 | Create (ia , f) -> create ia f

235 let op_t_to_t (o : t_to_t ) t = match o with

236 | Squeeze iao -> squeeze ?axis:iao t

237 | Reshape d -> reshape t d

238 | GetSlice ill -> get_slice ill t

239 | SliceLeft ia -> slice_left t ia

240 | Transpose iao -> transpose ?axis:iao t

241 | Exp -> exp t

242 | Negate -> ~- t

243 | PowerConst f -> pow_const t f

244 | SumReduce iao -> sum_reduce ?axis:iao t

245 | LogSumExp (io , bo) -> log_sum_exp ?axis:io ? keep_dims :bo t

246 | Softmax io -> softmax ?axis:io t

247 let op_t ’ t_to_t (o : t’ t_to_t ) t1 t2 = match o with

248 | Add -> t1 + t2

249 | Subtract -> t1 - t2

250 | Multiply -> t1 * t2

251 | Divide -> t1 / t2

252 | Einsum_ijk_mik_to_mij -> einsum_ijk_mik_to_mij t1 t2

253 | Einsum_ijk_mij_to_mik -> einsum_ijk_mij_to_mik t1 t2

254 | Einsum_mij_mik_to_ijk -> einsum_mij_mik_to_ijk t1 t2

255 | SetSlice ill -> set_slice ill t1 t2

256
257 let op_t_to_s (o : t_to_s ) t = match o with

258 | Get ia -> get t ia

259 | Sum -> sum t

260 let op_s ’ t_to_t (o : s’ t_to_t ) s t = match o with

261 | ScalarMultiply -> scalar_mul s t

262 | SubtractScalar -> sub_scalar t s

263 let op_ta_to_t (o : ta_to_t ) ta = match o with

264 | Concatenate io -> concatenate ?axis:io ta

265 | Stack io -> stack ?axis:io ta

266 let op_t_to_ta (o : t_to_ta ) t = match o with

267 | Split (io , ia) -> split ?axis:io ia t

268
269 let der_s_to_s (o : s_to_s ) s = match o with

270 | Negate -> fun sd -> ~. sd

271 | Log -> fun sd -> sd /. s

272 let der_s ’ s_to_s (o : s’ s_to_s ) s1 s2 = match o with

273 | Add -> fun sd -> (sd , sd)

274 | Subtract -> fun sd -> (sd , ~. sd)

275 | Multiply -> fun sd -> (s2 *. sd , s1 *. sd)

276 | Divide -> fun sd -> (sd /. s2 , (sd *. (~. s1 )) /. (s2 *. s2 ))

277
278 let der_t_to_t (o : t_to_t ) t = match o with

279 | Squeeze _ -> fun td -> reshape td ( shape t)

280 | Reshape _ -> fun td -> reshape td ( shape t)

281 | GetSlice ill -> fun td -> set_slice ill ( zeros ( shape t)) td

282 | SliceLeft ia -> fun td ->

283 let ill = Array . to_list ( Array .map (fun i -> [i]) ia) in

284 let shp = Array .( append (make ( length ia) 1) ( shape td )) in
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285 let tdr = reshape td shp in

286 set_slice ill ( zeros ( shape t)) tdr

287 | Transpose iao ->

288 let ia = match iao with

289 | None ->

290 let d = Array . length ( shape t) in

291 Array .init d Stdlib .( fun i -> d - i - 1)

292 | Some ia -> ia

293 in

294 fun td -> transpose ~axis :( _inv_perm ia) td

295 | Exp -> fun td -> exp t * td

296 | Negate -> fun td -> ~- td

297 | PowerConst f -> fun td ->

298 scalar_mul (c f) (td * pow_const t Stdlib .(f -. 1.0))

299 | SumReduce iao ->

300 let ia = ( match iao with

301 | None -> Array .init ( Array . length ( shape t)) (fun i -> i)

302 | Some ia -> ia

303 ) in

304 fun td -> _expand td ( shape t) ia

305 | LogSumExp (io , bo) -> (

306 let (i, b) = match (io , bo) with

307 | (None , None) -> (0, true)

308 | (Some i, None) -> (i, true)

309 | (None , Some b) -> (0, b)

310 | (Some i, Some b) -> (i, b)

311 in

312 if b

313 then fun td -> td * softmax ~axis:i t

314 else fun td ->

315 let shp = shape t in

316 shp .(i) <- 1;

317 ( reshape td shp) * ( softmax ~axis:i t)

318 )

319 | Softmax _io -> raise ( Invalid_argument " Softmax not implemented ")

320 let der_t ’ t_to_t (o : t’ t_to_t ) t1 t2 = match o with

321 | Add -> fun td -> (td , td)

322 | Subtract -> fun td -> (td , ~- td)

323 | Multiply -> fun td -> (t2 * td , t1 * td)

324 | Divide -> fun td -> (td / t2 , (td * (~- t1 )) / (t2 * t2 ))

325 | Einsum_ijk_mik_to_mij -> fun td ->

326 ( einsum_mij_mik_to_ijk td t2 , einsum_ijk_mij_to_mik t1 td)

327 | Einsum_ijk_mij_to_mik -> fun td ->

328 ( einsum_ijk_mik_to_mij t1 td , einsum_mij_mik_to_ijk t2 td)

329 | Einsum_mij_mik_to_ijk -> fun td ->

330 ( einsum_ijk_mik_to_mij td t2 , einsum_ijk_mij_to_mik td t1)

331 | SetSlice ill -> fun td ->

332 ( set_slice ill td ( zeros ( shape t2)), get_slice ill td)

333
334 let der_t_to_s (o : t_to_s ) t = match o with

335 | Get ia ->

336 let ill = Array . to_list ( Array .map (fun i -> [i]) ia) in

337 (fun sd ->
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338 let ones = Array .( make ( length ( shape t)) 1) in

339 set_slice ill ( zeros ( shape t)) ( scalar_mul sd ( create ones 1.0))

340 )

341 | Sum -> fun sd -> scalar_mul sd ( create ( shape t) 1.0)

342 let der_s ’ t_to_t (o : s’ t_to_t ) s t = match o with

343 | ScalarMultiply -> fun td -> (sum (t * td), scalar_mul s td)

344 | SubtractScalar -> fun td -> (~. (sum td), td)

345 let der_ta_to_t (o : ta_to_t ) ta = match o with

346 | Concatenate io ->

347 let i = ( match io with

348 | None -> 0

349 | Some i -> i

350 ) in

351 fun td -> split ~axis:i ( Array .map (fun x -> ( shape x).(i)) ta) td

352 | Stack io ->

353 let i = ( match io with

354 | None -> 0

355 | Some i -> i

356 ) in

357 (fun td ->

358 let shp = shape td in

359 let ndim = Array . length shp in

360 let axis = Owl_utils . adjust_index i ndim in

361 let inp_shp = shape ta .(0) in

362 split ~axis:i ( Array .make shp .( axis) 1) td

363 |> Array .map (fun x -> reshape x inp_shp )

364 )

365 let der_t_to_ta (o : t_to_ta ) _ = match o with

366 | Split (io , _) ->

367 let i = ( match io with

368 | None -> 0

369 | Some i -> i

370 ) in

371 fun tda -> concatenate ~axis:i tda

372 end

Listing A.36: Stateful reverse mode, tensors (OCaml)
1 open Effect .Deep

2 open Modules_effect_handlers_smooth_tensor

3
4 type ’t prop = {v : ’t; mutable dv : ’t}

5
6 module Reverse_Non_Diff (T : SMOOTH_NON_DIFF ) : SMOOTH_NON_DIFF

7 with type scalar = T. scalar prop

8 with type tensor = T. tensor prop

9 = struct

10 type scalar = T. scalar prop

11 type tensor = T. tensor prop

12
13 let shape t = T. shape t.v

14 let add_ x dx = T.add_ x.v dx.v; T.add_ x.dv dx.dv

15 end
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16
17 module Reverse (T : SMOOTH ) = struct

18 include Smooth ( Reverse_Non_Diff (T : SMOOTH_NON_DIFF ))

19
20 let reverse = {

21 retc = (fun x -> x);

22 exnc = raise ;

23 effc = (fun (type a) (eff : a Effect .t) ->

24 match eff with

25 | Ap_u_to_s o -> Some (fun (k : (a, _) continuation ) -> let open T in

26 continue k {v = op_u_to_s o; dv = c 0.0}

27 )

28 | Ap_s_to_s (o, s) -> Some (fun k -> let open T in

29 let r = {v = op_s_to_s o s.v; dv = c 0.0} in

30 continue k r;

31 s.dv <- s.dv +. ( der_s_to_s o s.v r.dv)

32 )

33 | Ap_s ’ s_to_s (o, s1 , s2) -> Some (fun k -> let open T in

34 let r = {v = op_s ’ s_to_s o s1.v s2.v; dv = c 0.0} in

35 continue k r;

36 let (dv1 , dv2) = der_s ’ s_to_s o s1.v s2.v r.dv in

37 s1.dv <- s1.dv +. dv1;

38 s2.dv <- s2.dv +. dv2

39 )

40 | Ap_u_to_t o -> Some (fun k -> let open T in

41 let v = op_u_to_t o in

42 continue k {v = v; dv = create ( shape v) 0.0}

43 )

44 | Ap_t_to_t (o, t) -> Some (fun k -> let open T in

45 let v = op_t_to_t o t.v in

46 let r = {v = v; dv = create ( shape v) 0.0} in

47 continue k r;

48 let dv = der_t_to_t o t.v r.dv in

49 if shape t.dv = shape dv then add_ t.dv dv else t.dv <- t.dv + dv

50 )

51 | Ap_t ’ t_to_t (o, t1 , t2) -> Some (fun k -> let open T in

52 let v = op_t ’ t_to_t o t1.v t2.v in

53 let r = {v = v; dv = create ( shape v) 0.0} in

54 continue k r;

55 let (dv1 , dv2) = der_t ’ t_to_t o t1.v t2.v r.dv in

56 if shape t1.dv = shape dv1

57 then add_ t1.dv dv1 else t1.dv <- t1.dv + dv1;

58 if shape t2.dv = shape dv2

59 then add_ t2.dv dv2 else t2.dv <- t2.dv + dv2

60 )

61 | Ap_t_to_s (o, t) -> Some (fun k -> let open T in

62 let r = {v = op_t_to_s o t.v; dv = c 0.0} in

63 continue k r;

64 let dv = der_t_to_s o t.v r.dv in

65 if shape t.dv = shape dv then add_ t.dv dv else t.dv <- t.dv + dv

66 )

67 | Ap_s ’ t_to_t (o, s, t) -> Some (fun k -> let open T in

68 let v = op_s ’ t_to_t o s.v t.v in
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69 let r = {v = v; dv = create ( shape v) 0.0} in

70 continue k r;

71 let (ds , dt) = der_s ’ t_to_t o s.v t.v r.dv in

72 s.dv <- s.dv +. ds;

73 if shape t.dv = shape dt then add_ t.dv dt else t.dv <- t.dv + dt

74 )

75 | Ap_ta_to_t (o, ta) -> Some (fun k -> let open T in

76 let tva = Array .( map (fun t -> t.v) ta) in

77 let v = op_ta_to_t o tva in

78 let r = {v = v; dv = create ( shape v) 0.0} in

79 continue k r;

80 let rdva = der_ta_to_t o tva r.dv in

81 ignore Array .( map2 (fun t rdv -> (

82 if shape t.dv = shape rdv then add_ t.dv rdv else t.dv <- t.dv + rdv

83 )) ta rdva)

84 )

85 | Ap_t_to_ta (o, t) -> Some (fun k -> let open T in

86 let va = op_t_to_ta o t.v in

87 let ra =

88 Array .( map (fun v -> {v = v; dv = create ( shape v) 0.0}) va)

89 in

90 continue k ra;

91 let rdva = Array .( map (fun r -> r.dv) ra) in

92 let dv = der_t_to_ta o t.v rdva in

93 if shape t.dv = shape dv then add_ t.dv dv else t.dv <- t.dv + dv

94 )

95 | _ -> None

96 )

97 }

98
99 let grad f ta =

100 let ra = Array .map (fun t -> {v = t; dv = T.( create ( shape t) 0.0)}) ta in

101 match_with (fun ta -> (f ta ). dv <- T.c 1.0) ra reverse ;

102 Array .map (fun r -> r.dv) ra

103 end

Listing A.37: GMM objective function (OCaml)
1 open Shared_gmm_data

2 open Shared_gmm_types

3
4 module type GMM_OBJECTIVE = sig

5 type tensor

6 type scalar

7
8 val gmm_objective : (scalar , tensor ) gmm_input -> scalar

9 end

10
11 module Make

12 (S : GMM_SCALAR )

13 (T : GMM_TENSOR with type scalar = S.t) : GMM_OBJECTIVE

14 with type tensor = T.t

15 with type scalar = S.t
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16 = struct

17 type tensor = T.t

18 type scalar = S.t

19 open S

20 open T

21
22 let ( + ) = add

23 let ( - ) = sub

24 let ( * ) = mul

25
26 let constructl d icfs =

27 let lparamidx = ref d in

28
29 let make_l_col i =

30 let nelems = Stdlib .(d - i - 1) in

31 (* Slicing in Owl requires inculsive indices , so will not create

32 * an empty tensor . Thus we have two cases .

33 *)

34 let max_lparamidx = ( shape icfs ).(0) in

35 let col =

36 if Stdlib .(! lparamidx >= max_lparamidx ) then

37 zeros [| Stdlib .(i + 1)|]

38 else concatenate ~axis :0 [|

39 zeros [| Stdlib .(i + 1)|];

40 get_slice [[! lparamidx ; Stdlib .(! lparamidx + nelems - 1)]] icfs;

41 |] in

42 lparamidx := Stdlib .(! lparamidx + nelems );

43 col

44 in

45
46 let columns = Array .init d make_l_col in

47 stack ~axis :1 columns

48
49 let qtimesx qdiag l x =

50 let y = einsum_ijk_mik_to_mij l x in

51 ( qdiag * x) + y

52
53 let log_gamma_distrib a p =

54 Stdlib .(

55 let scalar = (0.25 *. ( float_of_int (p * (p - 1))) *. log Float .pi) in

56 let summed = Array . fold_left (+.) 0.0

57 ( Array .init p (fun i ->

58 Owl. Maths . loggamma (a +. 0.5 *. ( float_of_int (1 - (i + 1))))

59 ))

60 in

61 scalar +. summed

62 )

63
64 let log_wishart_prior p wishart sum_qs qdiags icf =

65 let n = float_of_int ( Stdlib .(p + wishart .m + 1)) in

66 let k = float_of_int (( shape icf ).(0)) in

67
68 let out = sum_reduce (
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69 (

70 scalar_mul (S. float 0.5 *. wishart . gamma *. wishart . gamma )

71 ( squeeze (

72 sum_reduce ~axis :[|1|] ( pow_const qdiags 2.0) +

73 sum_reduce ~axis :[|1|] ( pow_const ( get_slice [[]; [p; -1]] icf) 2.0)

74 ))

75 )

76 - ( scalar_mul (S. float ( float_of_int wishart .m)) sum_qs )

77 ) in

78
79 let c =

80 S. float n

81 *. S. float ( float_of_int p)

82 *. (log ( wishart . gamma /. S. float ( Stdlib .sqrt 2.0)))

83 in

84 sub_scalar

85 out

86 (S. float k *. (c -. S. float ( log_gamma_distrib Stdlib .(0.5 *. n) p)))

87
88 let gmm_objective param =

89 let xshape = shape param .x in

90 let n = xshape .(0) in

91 let d = xshape .(1) in

92 let k = ( shape param . means ).(0) in

93
94 let qdiags = exp ( get_slice [[]; [0; Stdlib .(d - 1)]] param .icfs) in

95 let sqdiags = stack ( Array .make n qdiags ) in

96 let sum_qs = squeeze (

97 sum_reduce ~axis :[|1|] ( get_slice [[]; [0; Stdlib .(d - 1)]] param .icfs)

98 ) in

99 (* Prevent implicit broadcasting *)

100 let ssum_qs = stack ( Array .make n sum_qs ) in

101
102 let icf_sz = ( shape param .icfs ).(0) in

103 let ls = stack ( Array .init icf_sz (fun i ->

104 constructl d ( slice_left param .icfs [|i|]))

105 ) in

106
107 let xcentered = squeeze ( stack ( Array .init n (fun i ->

108 let sx = slice_left param .x [|i|] in

109 (* Prevent implicit broadcasting *)

110 let ssx = stack ( Array .make k sx) in

111 ssx - param . means

112 ))) in

113 let lxcentered = qtimesx sqdiags ls xcentered in

114 let sqsum_lxcentered = squeeze (

115 sum_reduce ~axis :[|2|] ( pow_const lxcentered 2.0)

116 ) in

117 (* Prevent implicit broadcasting *)

118 let salphas = stack ( Array .make n param . alphas ) in

119 let inner_term =

120 salphas + ssum_qs - ( scalar_mul (S. float 0.5) sqsum_lxcentered )

121 in
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122 (* Uses the stable version as in the paper , i.e. max - shifted *)

123 let lse = squeeze ( log_sum_exp ~axis :1 inner_term ) in

124 let slse = sum_reduce lse in

125
126 let const = create [||] Stdlib .(

127 -. ( float_of_int n) *. ( float_of_int d) *. 0.5 *. log (2.0 *. Float .pi)

128 ) in

129
130 let wish = log_wishart_prior d param . wishart sum_qs qdiags param .icfs in

131 get (

132 const + slse

133 - scalar_mul (S. float ( float_of_int n)) ( squeeze ( log_sum_exp param . alphas ))

134 + wish

135 ) [|0|]

136 end

A.11 Frank Patch

Listing A.38: Patch for Frank codebase
1 diff --git a/. gitignore b/. gitignore

2 index ab16fa5 ..07 fd4b5 100644

3 --- a/. gitignore

4 +++ b/. gitignore

5 @@ -4,3 +4 ,5 @@

6
7 # Ignore all the stuff generated by Stack

8 .stack -work/

9 +

10 +. vscode /

11 diff --git a/ Compile .hs b/ Compile .hs

12 index eb9e9d5 ..7269530 100644

13 --- a/ Compile .hs

14 +++ b/ Compile .hs

15 @@ -156 ,6 +156 ,7 @@ compileVPat (( StrPat s a) :: ValuePat Desugared ) =

↪→ compileVPat ( compileStrPat s)

16 compileStrPat [] = DataPat "nil" [] a

17 compileStrPat (c:cs) = DataPat "cons" [ CharPat c a, compileStrPat cs] a

18 compileVPat ( CharPat c _) = return $ S.VPX [Left c]

19 + compileVPat ( FloatPat f _) = return $ S.VPD f

20
21 compileTm :: Tm Desugared -> Compile S.Exp

22 compileTm (SC sc _) = compileSComp sc

23 @@ -165 ,6 +166 ,7 @@ compileTm ( StrTm s a) = compileDataCon (f s) where

24 f [] = DataCon "nil" [] a

25 f (c:cs) = DataCon "cons" [ CharTm c a, DCon (f cs) a] a

26 compileTm ( IntTm n _) = return $ S.EI n

27 + compileTm ( FloatTm f _) = return $ S.ED f

28 compileTm ( CharTm c _) = return $ S.EX [Left c]

29 compileTm ( TmSeq t1 t2 _) = (S.:!) <$> compileTm t1 <*> compileTm t2

30 compileTm (Use u _) = compileUse u

31 @@ -203 ,10 +205 ,24 @@ compileOp ( CmdId id _) = return $ S.EA id
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32
33 builtins :: M.Map String String

34 builtins = M. fromList [("+" , "plus ")

35 + ,("*" , " times ")

36 ,("-", " minus ")

37 + ,("*" , "mult ")

38 ,(" eqc" , "eqc ")

39 ,(">", "gt ")

40 - ,("<", "lt ")]

41 + ,("<", "lt ")

42 + ,("==" , "eqN ")

43 + -- floats

44 + ,(">.", "gtF ")

45 + ,("<.", "ltF ")

46 + ,("+." , " plusF ")

47 + ,("-.", " minusF ")

48 + ,("*." , " multF ")

49 + ,("/." , "divF ")

50 + ,("==." , "eqF ")

51 + ,(" round ", " roundF ")

52 + ,(" toFloat ", " toFloat ")

53 + ]

54
55 isBuiltin :: String -> Bool

56 isBuiltin x = M. member x builtins

57 diff --git a/ Debug .hs b/ Debug .hs

58 index 9 a171e4 .. e6cf2c7 100644

59 --- a/ Debug .hs

60 +++ b/ Debug .hs

61 @@ -370 ,6 +370 ,7 @@ ppVType ( FTVar x _) = if isDebugVerboseOn () then text x

↪→ else text $ trimVar x

62 ppVType ( StringTy _) = text " String "

63 ppVType ( IntTy _) = text "Int"

64 ppVType ( CharTy _) = text "Char"

65 + ppVType ( FloatTy _) = text " Float "

66
67 ppTyArg :: (Show a, HasSource a) => TyArg a -> PP.Doc

68 ppTyArg (VArg t _) = ppParenVType t

69 diff --git a/ DesugarSyntax .hs b/ DesugarSyntax .hs

70 index a0c7391 ..051 faa1 100644

71 --- a/ DesugarSyntax .hs

72 +++ b/ DesugarSyntax .hs

73 @@ -162 ,6 +162 ,7 @@ desugarVType (SCTy ty a) = do ty ’ <- desugarCType ty

74 desugarVType ( StringTy a) = return $ desugaredStrTy ( refToDesug a)

75 desugarVType ( IntTy a) = return $ IntTy ( refToDesug a)

76 desugarVType ( CharTy a) = return $ CharTy ( refToDesug a)

77 + desugarVType ( FloatTy a) = return $ FloatTy ( refToDesug a)

78
79 -- nothing happens on this level

80 desugarTyArg :: TyArg Refined -> Desugar ( TyArg Desugared )

81 @@ -221 ,6 +222 ,7 @@ desugarTm (SC x a) = SC <$> desugarSComp x <*> pure (

↪→ refToDesug a)

82 desugarTm ( StrTm s a) = return $ StrTm s ( refToDesug a)
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83 desugarTm ( IntTm n a) = return $ IntTm n ( refToDesug a)

84 desugarTm ( CharTm c a) = return $ CharTm c ( refToDesug a)

85 + desugarTm ( FloatTm f a) = return $ FloatTm f ( refToDesug a)

86 desugarTm ( TmSeq tm1 tm2 a) = TmSeq <$> desugarTm tm1 <*> desugarTm tm2 <*>

↪→ pure ( refToDesug a)

87 desugarTm (Use u a) = Use <$> desugarUse u <*> pure ( refToDesug a)

88 desugarTm (DCon d a) = DCon <$> desugarDCon d <*> pure ( refToDesug a)

89 @@ -239 ,6 +241 ,7 @@ desugarVPat ( DataPat x xs a) =

90 desugarVPat ( IntPat i a) = return $ IntPat i ( refToDesug a)

91 desugarVPat ( CharPat c a) = return $ CharPat c ( refToDesug a)

92 desugarVPat ( StrPat s a) = return $ StrPat s ( refToDesug a)

93 + desugarVPat ( FloatPat s a) = return $ FloatPat s ( refToDesug a)

94
95 desugarSComp :: SComp Refined -> Desugar ( SComp Desugared )

96 desugarSComp ( SComp xs a) =

97 diff --git a/ Parser .hs b/ Parser .hs

98 index ed8b0cd ..6 f25a2f 100644

99 --- a/ Parser .hs

100 +++ b/ Parser .hs

101 @@ -278 ,6 +278 ,7 @@ vtype ’ :: MonadicParsing m => m ( VType Raw)

102 vtype ’ = parens vtype <|>

103 ( attachLoc $ SCTy <$> try ctype ) <|>

104 ( attachLoc $ StringTy <$ reserved " String ") <|>

105 + ( attachLoc $ FloatTy <$ reserved " Float ") <|>

106 ( attachLoc $ IntTy <$ reserved "Int ") <|>

107 ( attachLoc $ CharTy <$ reserved "Char ") <|>

108 -- could possibly also be a MkDTTy ( determined during refinement )

109 @@ -351 ,12 +352 ,13 @@ usetm = ( attachLoc $ Use <$> (try $ use nctm)) <|> --

↪→ use

110
111 -- atomic term

112 atm :: MonadicParsing m => m (Tm Raw)

113 -atm = ( attachLoc $ SC <$> suspComp ) <|> -- { p_1 -> t_1 | ... }

114 - ( attachLoc $ StrTm <$> stringLiteral ) <|> -- " string "

115 +atm = ( attachLoc $ SC <$> suspComp ) <|> -- { p_1 -> t_1 |

↪→ ... }

116 + ( attachLoc $ StrTm <$> stringLiteral ) <|> -- " string "

117 + ( attachLoc $ FloatTm <$> try double ) <|> -- 3.14

118 ( attachLoc $ ( IntTm . fromIntegral ) <$> natural ) <|> -- 42

119 - ( attachLoc $ CharTm <$> charLiteral ) <|> -- ’c’

120 - ( attachLoc $ ListTm <$> listTm ) <|> -- [t_1 , ... , t_n]

121 - parens tm -- (ltm ; ... ; ltm)

122 + ( attachLoc $ CharTm <$> charLiteral ) <|> -- ’c’

123 + ( attachLoc $ ListTm <$> listTm ) <|> -- [t_1 , ... , t_n

↪→ ]

124 + parens tm -- (ltm ; ... ;

↪→ ltm)

125
126 letTm :: MonadicParsing m => m (Tm Raw) -> m (Tm Raw) -> m (Tm Raw)

127 letTm p p’ = attachLoc $ do reserved "let"

128 @@ -368 ,21 +370 ,33 @@ letTm p p’ = attachLoc $ do reserved "let"

129 return $ Let x t t’

130
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131 binOpLeft :: MonadicParsing m => m (Use Raw)

132 -binOpLeft = attachLoc $ do op <- choice $ map symbol ["+" ," -" ,"*" ,"/" ," >" ," <"]

133 + binOpLeft = attachLoc $ do op <- choice $ map symbol (( map (\x -> x ++ "."))

↪→ arithOps ++ arithOps )

134 return $ RawId op

135 + where

136 + arithOps = ["+" ," -" ,"*" ,"/" ," >" ," <" , "=="]

137
138 binOpRight :: MonadicParsing m => m (Use Raw)

139 -binOpRight = attachLoc $ do op <- choice $ map symbol ["::"]

140 - let op ’ = if op == "::" then "cons" else op

141 + binOpRight = attachLoc $ do op <- choice $ map symbol ["::" ,":="]

142 + let op ’ = case op of {"::" -> "cons "; ":=" -> "

↪→ write "; _ -> op}

143 return $ RawId op ’

144
145 -- unary operation

146 unOperation :: ( MonadicParsing m) => m (Tm Raw)

147 -unOperation = provideLoc $ \a -> do

148 + unOperation = try negInt <|>

149 + negFloat

150 +

151 + negInt :: ( MonadicParsing m) => m (Tm Raw)

152 + negInt = provideLoc $ \a -> do

153 symbol "-"

154 t <- untm

155 return $ Use ( RawComb ( RawId "-" a) [ IntTm 0 a, t] a) a

156
157 + negFloat :: ( MonadicParsing m) => m (Tm Raw)

158 + negFloat = provideLoc $ \a -> do

159 + symbol " -."

160 + t <- untm

161 + return $ Use ( RawComb ( RawId " -." a) [ FloatTm 0.0 a, t] a) a

162 +

163 -- use

164 use :: MonadicParsing m => m (Tm Raw) -> m (Use Raw)

165 use p = adapted ( ncuse p) <|> -- <adp_1 ,... adp_n > ncuse

166 @@ -408 ,8 +422 ,13 @@ ncuse p = provideLoc $ \a -> do

167
168 -- atomic use

169 ause :: MonadicParsing m => m (Tm Raw) -> m (Use Raw)

170 -ause p = parens (use p) <|> -- (use)

171 - idUse -- x

172 +ause p = provideLoc $ \a -> do

173 + deref <- optional ( symbol "@")

174 + t <- parens (use p) <|> -- (use)

175 + idUse -- x

176 + return $ case deref of

177 + Nothing -> t

178 + Just _ -> RawComb ( RawId "read" a) [Use t a] a

179
180 adapted :: MonadicParsing m => m (Use Raw) -> m (Use Raw)

181 adapted p = attachLoc $ do -- <adp_1 ,adp_2 ,... , adp_n > stm
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182 @@ -494 ,6 +513 ,7 @@ valPat :: MonadicParsing m => m ( ValuePat Raw)

183 valPat = dataPat <|>

184 ( attachLoc $ do x <- identifier

185 return $ VarPat x) <|>

186 + ( attachLoc $ FloatPat <$> try double ) <|>

187 ( attachLoc $ IntPat <$> try parseInt ) <|> -- try block for unary minus

188 ( attachLoc $ CharPat <$> charLiteral ) <|>

189 ( attachLoc $ StrPat <$> stringLiteral ) <|>

190 diff --git a/ ParserCommon .hs b/ ParserCommon .hs

191 index 8 edc032 ..68 ad1cb 100644

192 --- a/ ParserCommon .hs

193 +++ b/ ParserCommon .hs

194 @@ -46,7 +46 ,7 @@ frankStyle = IdentifierStyle {

195 , _styleLetter = satisfy (\c -> isAlphaNum c || c == ’_’ || c == ’\’’)

196 , _styleReserved = HashSet . fromList [ "data", " interface "

197 , "let", "in"

198 - , " String ", "Int", "Char "]

199 + , " String ", "Int", "Char", " Float "]

200 , _styleHighlight = Hi. Identifier

201 , _styleReservedHighlight = Hi. ReservedIdentifier }

202
203 diff --git a/ RefineSyntax .hs b/ RefineSyntax .hs

204 index a4f74a6 ..7757 fa7 100644

205 --- a/ RefineSyntax .hs

206 +++ b/ RefineSyntax .hs

207 @@ -320 ,6 +320 ,7 @@ refineVType (TVar x a) =

208 refineVType ( StringTy a) = return $ StringTy ( rawToRef a)

209 refineVType ( IntTy a) = return $ IntTy ( rawToRef a)

210 refineVType ( CharTy a) = return $ CharTy ( rawToRef a)

211 + refineVType ( FloatTy a) = return $ FloatTy ( rawToRef a)

212
213 refineTyArg :: TyArg Raw -> Refine ( TyArg Refined )

214 refineTyArg (VArg t a) = VArg <$> refineVType t <*> pure ( rawToRef a)

215 @@ -406 ,6 +407 ,7 @@ refineTm (SC x a) = do x’ <- refineSComp x

216 refineTm ( StrTm x a) = return $ StrTm x ( rawToRef a)

217 refineTm ( IntTm x a) = return $ IntTm x ( rawToRef a)

218 refineTm ( CharTm x a) = return $ CharTm x ( rawToRef a)

219 + refineTm ( FloatTm x a) = return $ FloatTm x ( rawToRef a)

220 refineTm ( ListTm ts a) =

221 do ts ’ <- mapM refineTm ts

222 return $

223 @@ -462 ,6 +464 ,7 @@ refineVPat ( DataPat x xs a) =

224 refineVPat ( IntPat i a) = return $ IntPat i ( rawToRef a)

225 refineVPat ( CharPat c a) = return $ CharPat c ( rawToRef a)

226 refineVPat ( StrPat s a) = return $ StrPat s ( rawToRef a)

227 + refineVPat ( FloatPat f a) = return $ FloatPat f ( rawToRef a)

228 refineVPat ( ConsPat x xs a) =

229 do x’ <- refineVPat x

230 xs ’ <- refineVPat xs

231 @@ -488 ,16 +491 ,6 @@ initialiseRState dts itfs itfAls =

232 putRCmds cmds ’

233 putRCtrs ctrs ’

234
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235 -makeIntBinOp :: Refined -> Char -> MHDef Refined

236 -makeIntBinOp a c = Def [c] ( CType [Port [] ( IntTy a) a

237 - ,Port [] ( IntTy a) a]

238 - (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)

↪→ ( IntTy a) a) a) [] a

239 -

240 -makeIntBinCmp :: Refined -> Char -> MHDef Refined

241 -makeIntBinCmp a c = Def [c] ( CType [Port [] ( IntTy a) a

242 - ,Port [] ( IntTy a) a]

243 - (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)

244 - (DTTy "Bool" [] a) a) a) [] a

245
246 {-- The initial state for the refinement pass. -}

247
248 @@ -528 ,10 +521 ,42 @@ builtinItfs = [Itf " Console " [] [Cmd "inch" [] [] ( CharTy

↪→ b) b

249 builtinItfAliases :: [ ItfAlias Raw]

250 builtinItfAliases = []

251
252 -builtinMHDefs :: [ MHDef Refined ]

253 -builtinMHDefs = map ( makeIntBinOp ( Refined BuiltIn )) "+ -" ++

254 - map ( makeIntBinCmp ( Refined BuiltIn )) "><" ++

255 - [caseDef , charEq , alphaNumPred ]

256 + makeIntBinOp :: Refined -> Char -> MHDef Refined

257 + makeIntBinOp a c = Def [c] ( CType [Port [] ( IntTy a) a

258 + ,Port [] ( IntTy a) a]

259 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)

↪→ ( IntTy a) a) a) [] a

260 +

261 + makeIntBinCmp :: Refined -> Char -> MHDef Refined

262 + makeIntBinCmp a c = Def [c] ( CType [Port [] ( IntTy a) a

263 + ,Port [] ( IntTy a) a]

264 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)

265 + (DTTy "Bool" [] a) a) a) [] a

266 +

267 +-- as above , but we now use Flaot instead .

268 + makeFloatBinOp :: Refined -> Char -> MHDef Refined

269 + makeFloatBinOp a c = Def (c : ".") ( CType [Port [] ( FloatTy a) a

270 + ,Port [] ( FloatTy a) a]

271 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M.

↪→ empty a) a) ( FloatTy a) a) a) [] a

272 +

273 + makeFloatBinCmp :: Refined -> Char -> MHDef Refined

274 + makeFloatBinCmp a c = Def (c : ".") ( CType [Port [] ( FloatTy a) a

275 + ,Port [] ( FloatTy a) a]

276 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M.

↪→ empty a) a)

277 + (DTTy "Bool" [] a) a) a) [] a

278 +

279 + intEq :: MHDef Refined

280 + intEq = Def "==" ( CType [Port [] ( IntTy a) a

281 + ,Port [] ( IntTy a) a]

282 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)
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283 + (DTTy "Bool" [] a) a) a) [] a

284 + where a = Refined BuiltIn

285 +

286 + floatEq :: MHDef Refined

287 + floatEq = Def "==." ( CType [Port [] ( FloatTy a) a

288 + ,Port [] ( FloatTy a) a]

289 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)

290 + (DTTy "Bool" [] a) a) a) [] a

291 + where a = Refined BuiltIn

292
293 charEq :: MHDef Refined

294 charEq = Def "eqc" ( CType [Port [] ( CharTy a) a

295 @@ -540 ,6 +565 ,13 @@ charEq = Def "eqc" ( CType [Port [] ( CharTy a) a

296 (DTTy "Bool" [] a) a) a) [] a

297 where a = Refined BuiltIn

298
299 + refEq :: MHDef Refined

300 + refEq = Def "eqR" ( CType [Port [] (DTTy "Ref" [VArg (TVar "X" a) a] a) a

301 + ,Port [] (DTTy "Ref" [VArg (TVar "X" a) a] a) a]

302 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)

303 + (DTTy "Bool" [] a) a) a) [] a

304 + where a = Refined BuiltIn

305 +

306 alphaNumPred :: MHDef Refined

307 alphaNumPred = Def " isAlphaNum "

308 ( CType [Port [] ( CharTy a) a]

309 @@ -547 ,6 +579 ,23 @@ alphaNumPred = Def " isAlphaNum "

310 (DTTy "Bool" [] a) a) a) [] a

311 where a = Refined BuiltIn

312
313 + chrFunc :: MHDef Refined

314 + chrFunc = Def "chr"

315 + ( CType [Port [] ( IntTy a) a]

316 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a)

317 + ( CharTy a) a) a) [] a

318 + where a = Refined BuiltIn

319 +

320 + roundMH :: MHDef Refined

321 + roundMH = Def " round " ( CType [Port [] ( FloatTy a) a]

322 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a) ( IntTy

↪→ a) a) a) [] a

323 + where a = Refined BuiltIn

324 +

325 + toFloat :: MHDef Refined

326 + toFloat = Def " toFloat " ( CType [Port [] ( IntTy a) a]

327 + (Peg (Ab ( AbVar "Âč" a) ( ItfMap M. empty a) a) (

↪→ FloatTy a) a) a) [] a

328 + where a = Refined BuiltIn

329 +

330 caseDef :: MHDef Refined

331 caseDef = Def

332 "case"

333 @@ -562 ,6 +611 ,14 @@ caseDef = Def
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334 [Use (Op ( VarId "x" b) b) b] b) b) b] b

335 where b = Refined BuiltIn

336
337 +

338 + builtinMHDefs :: [ MHDef Refined ]

339 + builtinMHDefs = map ( makeIntBinOp ( Refined BuiltIn )) "+ -*" ++

340 + map ( makeIntBinCmp ( Refined BuiltIn )) "><" ++

341 + map ( makeFloatBinOp ( Refined BuiltIn )) "+ -*/" ++

342 + map ( makeFloatBinCmp ( Refined BuiltIn )) "><" ++

343 + [caseDef , charEq , alphaNumPred , floatEq , intEq , roundMH ,

↪→ toFloat , refEq ]

344 +

345 builtinDTs :: DTMap

346 builtinDTs = foldl add M. empty builtinDataTs

347 where add m (DT id ps _ a) = M. insert id ps m

348 diff --git a/ RefineSyntaxConcretiseEps .hs b/ RefineSyntaxConcretiseEps .hs

349 index 877 b449 ..448 e8cd 100644

350 --- a/ RefineSyntaxConcretiseEps .hs

351 +++ b/ RefineSyntaxConcretiseEps .hs

352 @@ -66,7 +66 ,6 @@ concretiseEps dts itfs itfAls =

353 ([i], []) -> Just $ ItfNode i

354 ([] , [i]) -> Just $ ItfAlNode i

355 _ -> Nothing

356 -

357 -- Given graph (undecided -nodes , positive -nodes , negative - nodes ), decide

358 -- subgraphs as long as there are unvisited nodes . Finally (base case),

359 -- return positive nodes .

360 @@ -156 ,6 +155 ,7 @@ concretiseEps dts itfs itfAls =

361 else hasEpsDTTy tvs x [] --

↪→ ... or not (but data type)

362 hasEpsVType tvs ( StringTy _) = hasNoEps

363 hasEpsVType tvs ( IntTy _) = hasNoEps

364 + hasEpsVType tvs ( FloatTy _) = hasNoEps

365 hasEpsVType tvs ( CharTy _) = hasNoEps

366
367 hasEpsDTTy :: [Id] -> Id -> [ TyArg Raw] -> HasEps

368 diff --git a/ Syntax .hs b/ Syntax .hs

369 index cf0a72a .. f0d4b2a 100644

370 --- a/ Syntax .hs

371 +++ b/ Syntax .hs

372 @@ -284 ,6 +284 ,7 @@ data TmF :: ((* -> *) -> (* -> *)) -> * -> * where

373 MkStr :: String -> TmF t r

374 MkInt :: Int -> TmF t r

375 MkChar :: Char -> TmF t r

376 + MkFloat :: Double -> TmF t r -- Frank floats are provisionally

↪→ Haskell doubles .

377 MkList :: [r] -> TmF ( AnnotT Raw) r

378 MkTmSeq :: r -> r -> TmF t r

379 MkUse :: TFix t UseF -> TmF t r

380 @@ -302 ,6 +303 ,7 @@ pattern Let x tm1 tm2 a = Fx (AnnF ( MkLet x tm1 tm2 , a))

381 pattern StrTm str a = Fx (AnnF ( MkStr str , a))

382 pattern IntTm n a = Fx (AnnF ( MkInt n, a))

383 pattern CharTm c a = Fx (AnnF ( MkChar c, a))



248 Appendix A. Programs

384 + pattern FloatTm f a = Fx (AnnF ( MkFloat f, a))

385 pattern ListTm xs a = Fx (AnnF ( MkList xs , a))

386 pattern TmSeq tm1 tm2 a = Fx (AnnF ( MkTmSeq tm1 tm2 , a))

387 pattern Use u a = Fx (AnnF ( MkUse u, a))

388 @@ -403 ,6 +405 ,7 @@ data ValuePatF :: ((* -> *) -> (* -> *)) -> * -> * where

389 MkDataPat :: Id -> [r] -> ValuePatF t r

390 MkIntPat :: Int -> ValuePatF t r

391 MkCharPat :: Char -> ValuePatF t r

392 + MkFloatPat :: Double -> ValuePatF t r

393 MkStrPat :: String -> ValuePatF t r

394 MkConsPat :: r -> r -> ValuePatF ( AnnotT Raw) r

395 MkListPat :: [r] -> ValuePatF ( AnnotT Raw) r

396 @@ -413 ,6 +416 ,7 @@ pattern VarPat x a = Fx (AnnF ( MkVarPat x, a))

397 pattern DataPat x vps a = Fx (AnnF ( MkDataPat x vps , a))

398 pattern IntPat n a = Fx (AnnF ( MkIntPat n, a))

399 pattern CharPat c a = Fx (AnnF ( MkCharPat c, a))

400 + pattern FloatPat d a = Fx (AnnF ( MkFloatPat d, a))

401 pattern StrPat str a = Fx (AnnF ( MkStrPat str , a))

402 pattern ConsPat p1 p2 a = Fx (AnnF ( MkConsPat p1 p2 , a))

403 pattern ListPat ps a = Fx (AnnF ( MkListPat ps , a))

404 @@ -460 ,6 +464 ,7 @@ data VTypeF :: ((* -> *) -> (* -> *)) -> * -> * where

↪→ -- v

405 MkStringTy :: NotDesugared (t Identity ()) => VTypeF t r --

↪→ string type

406 MkIntTy :: VTypeF t r --

↪→ int type

407 MkCharTy :: VTypeF t r --

↪→ char type

408 + MkFloatTy :: VTypeF t r --

↪→ float type

409 deriving instance (Show (TFix t TyArgF ),

410 Show (TFix t CTypeF ),

411 Show r, Show (TFix t VTypeF )) => Show ( VTypeF t r)

412 @@ -475 ,6 +480 ,7 @@ pattern FTVar x a = Fx (AnnF ( MkFTVar x, a))

413 pattern StringTy a = Fx (AnnF ( MkStringTy , a))

414 pattern IntTy a = Fx (AnnF (MkIntTy , a))

415 pattern CharTy a = Fx (AnnF (MkCharTy , a))

416 + pattern FloatTy a = Fx (AnnF (MkFloatTy , a))

417
418 -- Interface -id -> list of bwd -list of ty arg ’s (each entry an instantiation )

419 data ItfMapF :: ((* -> *) -> (* -> *)) -> * -> * where

420 @@ -567 ,8 +573 ,8 @@ getCtrs (DT _ _ xs _) = xs

421 collectDTNames :: [ DataT t] -> [Id]

422 collectDTNames = map (\ case (DT dt _ _ _) -> dt)

423
424 --- Convert ability to a list of interface names and effect variables

425 {-

426 +-- Convert ability to a list of interface names and effect variables

427 abToList :: Ab a -> [Id]

428 abToList MkEmpAb = []

429 abToList ( MkAbVar id) = [id]

430 @@ -620 ,7 +626 ,7 @@ tyVar2rawTyVarArg (id , VT) = VArg (TVar id (Raw Generated ))

↪→ (Raw Generated )
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431 tyVar2rawTyVarArg (id , ET) = EArg ( liftAbMod ( AbVar id (Raw Generated )))

432 (Raw Generated )

433
434 --- transform type variable (+ its kind) to a rigid tye variable argument

435 +-- transform type variable (+ its kind) to a rigid type variable argument

436 -- ( prepare for later unification )

437 tyVar2rigTyVarArg :: (Id , Kind) -> TyArg Desugared

438 tyVar2rigTyVarArg (id , VT) = VArg ( RTVar id ( Desugared Generated ))

439 diff --git a/ TypeCheck .hs b/ TypeCheck .hs

440 index ff5c17d ..626 e59b 100644

441 --- a/ TypeCheck .hs

442 +++ b/ TypeCheck .hs

443 @@ -252 ,10 +252 ,11 @@ inferUse adpd@ ( Adapted adps t a) =

444 -- 2nd major TC function besides " check ": Check that term ( construction ) has

445 -- given type

446 checkTm :: Tm Desugared -> VType Desugared -> Contextual (Tm Desugared )

447 -checkTm (SC sc a) ty = SC <$> ( checkSComp sc ty) <*> (pure a)

448 + checkTm (SC sc a) ty = SC <$> checkSComp sc ty <*> pure a

449 checkTm tm@( StrTm _ a) ty = unify ( desugaredStrTy a) ty >> return tm

450 checkTm tm@( IntTm _ a) ty = unify ( IntTy a) ty >> return tm

451 checkTm tm@( CharTm _ a) ty = unify ( CharTy a) ty >> return tm

452 + checkTm tm@( FloatTm _ a) ty = unify ( FloatTy a) ty >> return tm

453 checkTm tm@( TmSeq tm1 tm2 a) ty =

454 -- create dummy mvar s.t. any type of tm1 can be unified with it

455 do ftvar <- freshMVar "seq"

456 @@ -410 ,6 +411 ,7 @@ checkVPat ( DataPat k ps a) ty =

457 checkVPat ( CharPat _ a) ty = unify ty ( CharTy a) >> return []

458 checkVPat ( StrPat _ a) ty = unify ty ( desugaredStrTy a) >> return []

459 checkVPat ( IntPat _ a) ty = unify ty ( IntTy a) >> return []

460 + checkVPat ( FloatPat _ a) ty = unify ty ( FloatTy a) >> return []

461 -- checkVPat p ty = throwError $ " failed to match value pattern " ++

462 -- (show p) ++ " with type " ++ (show ty)

463
464 diff --git a/ TypeCheckCommon .hs b/ TypeCheckCommon .hs

465 index 6717270.. c33e33a 100644

466 --- a/ TypeCheckCommon .hs

467 +++ b/ TypeCheckCommon .hs

468 @@ -78,6 +78 ,7 @@ fmv ( FTVar x _) = S. singleton x

469 fmv ( RTVar x _) = S. empty

470 fmv ( StringTy _) = S. empty

471 fmv ( IntTy _) = S. empty

472 +fmv ( FloatTy _) = S. empty

473 fmv ( CharTy _) = S. empty

474
475 fmvAb :: Ab Desugared -> S.Set Id

476 diff --git a/ Unification .hs b/ Unification .hs

477 index 5 b11bc3 .. eb36819 100644

478 --- a/ Unification .hs

479 +++ b/ Unification .hs

480 @@ -48,6 +48 ,7 @@ unify t0 t1 = do logBeginUnify t0 t1

481 unify ’ ( RTVar a _) ( RTVar b _) | a == b = return ()

482 unify ’ ( IntTy _) ( IntTy _) = return ()

483 unify ’ ( CharTy _) ( CharTy _) = return ()
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484 + unify ’ ( FloatTy _) ( FloatTy _) = return ()

485 unify ’ fta@( FTVar a _) ftb@( FTVar b _) = onTop $ \c d ->

486 cmp (a == c) (b == c) d

487 where cmp :: Bool -> Bool -> Decl -> Contextual Extension

488 diff --git a/ examples /float -ops.fk b/ examples /float -ops.fk

489 new file mode 100644

490 index 0000000..41 b59e6

491 --- /dev/null

492 +++ b/ examples /float -ops.fk

493 @@ -0,0 +1 ,2 @@

494 +main : {Bool}

495 +main! = (( toFloat 4) *. (-. 2.0)) <. (4.9 +. 5.1)

496 diff --git a/ shonky /src/ Shonky / Semantics .hs b/ shonky /src/ Shonky / Semantics .hs

497 index a6c294b ..8817612 100644

498 --- a/ shonky /src/ Shonky / Semantics .hs

499 +++ b/ shonky /src/ Shonky / Semantics .hs

500 @@ -14,7 +14 ,7 @@ import qualified Data.Map. Strict as M

501 import Shonky . Syntax

502 import Shonky . Renaming

503
504 -import Debug . Trace

505 +-- import Debug . Trace ( trace )

506 import Debug

507
508 -- There is no predefined Show instance

509 @@ -24,6 +24 ,7 @@ instance Show ( IORef a) where

510 data Val

511 = VA String --

↪→ atom

512 | VI Int --

↪→ int

513 + | VD Double --

↪→ float ( double )

514 | Val :&& Val --

↪→ cons

515 | VX String --

↪→ string

516 | VF Env [([ Adap], [ String ])] [([ Pat], Exp)] --

↪→ function ( anonymous ), has environment , for each port: list of adaptors +

↪→ list of commands to be captured , list of patterns + handling expressions

517 @@ -89,6 +90 ,8 @@ envToList g = envToList ’ g []

518 ppVal :: Val -> Doc

519 ppVal (VA s) = text $ "’" ++ s -- TODO: error message here?

520 ppVal (VI n) = int n

521 + ppVal (VD f) = text $ show f -- TODO: replace with something else; couldn ’

↪→ t

522 + -- find a suitable builtin function

523 ppVal v@(VA "cons" :&& (VX [_] :&& _)) = doubleQuotes ( ppStringVal v)

524 ppVal (VA "cons" :&& (v :&& w)) = ppBrackets $ ppVal v <> ppListVal w

525 ppVal (VA "nil" :&& _) = ppBrackets empty

526 @@ -159 ,61 +162 ,6 @@ sepBy s ds = vcat $ punctuate s ds

527 bracketed :: Doc -> [Doc] -> Doc

528 bracketed s ds = lbrack <+> ( sepBy s ds <+> rbrack )
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529
530 --- Given env and 2 operands (that are values ), compute result

531 -plus :: Env -> [Comp] -> Val

532 -plus g [a1 ,a2] = VI (f a1 + f a2)

533 - where f x = case x of

534 - Ret (VI n) -> n

535 - _ -> error "plus: argument not an int"

536 -plus g _ = error "plus: incorrect number of arguments , expected 2."

537 -

538 -minus :: Env -> [Comp] -> Val

539 -minus g [a1 ,a2] = VI (f a1 - f a2)

540 - where f x = case x of

541 - Ret (VI n) -> n

542 - _ -> error " minus : argument not an int"

543 -minus g _ = error " minus : incorrect number of arguments , expected 2."

544 -

545 -builtinPred :: Bool -> Val

546 -builtinPred b = (if b then VA "true" else VA " false ") :&& VA ""

547 -

548 -lt :: Env -> [Comp] -> Val

549 -lt g [a1 ,a2] = builtinPred ((f a1) < (f a2))

550 - where f x = case x of

551 - Ret (VI n) -> n

552 - _ -> error "plus: argument not an int"

553 -lt g _ = error "plus: incorrect number of arguments , expected 2."

554 -

555 -gt :: Env -> [Comp] -> Val

556 -gt g [a1 ,a2] = builtinPred ((f a1) > (f a2))

557 - where f x = case x of

558 - Ret (VI n) -> n

559 - _ -> error "plus: argument not an int"

560 -gt g _ = error "plus: incorrect number of arguments , expected 2."

561 -

562 -

563 -eqc :: Env -> [Comp] -> Val

564 -eqc g [a1 ,a2] = builtinPred ((f a1) == (f a2))

565 - where f x = case x of

566 - Ret (VX [c]) -> c

567 - _ -> error "eqc: argument not a character "

568 -eqc g _ = error "eqc: incorrect number of arguments , expected 2."

569 -

570 -alphaNumPred :: Env -> [Comp] -> Val

571 -alphaNumPred g [a] =

572 - (if isAlphaNum (f a) then VA "true" else VA " false ") :&& VA ""

573 - where f x = case x of

574 - Ret (VX [c]) -> c

575 - _ -> error " alphaNumPred : argument not a character "

576 -alphaNumPred g _ =

577 - error " alphaNumPred : incorrect number of arguments , expected 2."

578 -

579 -

580 -builtins :: M.Map String (Env -> [Comp] -> Val)

581 -builtins = M. fromList [(" plus", plus), (" minus ", minus ), (" eqc", eqc)
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582 - ,("lt", lt), (" gt", gt)

583 - ,(" isAlphaNum ", alphaNumPred )]

584 -

585 -- Look -up a definition

586 fetch :: Env -> String -> Val

587 fetch g y = go g where

588 @@ -241 ,6 +189 ,7 @@ compute :: Env -> Exp -> Agenda -> Comp

589 compute g (EV x) ls = consume ( fetch g x) ls --

↪→ 1) look -up value

590 compute g (EA a) ls = consume (VA a) ls --

↪→ 1) feed atom

591 compute g (EI n) ls = consume (VI n) ls --

↪→ 1) feed int

592 + compute g (ED f) ls = consume (VD f) ls --

↪→ 1) feed double

593 compute g (a :& d) ls = compute g a (Car g d : ls) --

↪→ 2) compute head. save tail for later .

594 compute g (f :$ as) ls = compute g f (Fun g as : ls) --

↪→ 2) Application . Compute function . Save args for later .

595 compute g (e :! f) ls = compute g e (Seq g f : ls) --

↪→ 2) Sequence . Compute 1st exp. Save 2nd for later .

596 @@ -477 ,13 +426 ,6 @@ txt (VA a) = a

597 txt (VX a) = a

598 txt (u :&& v) = txt u ++ txt v

599
600 -envBuiltins :: Env

601 -envBuiltins = Empty :/ [DF "plus" [] []

602 - ,DF " minus " [] []

603 - ,DF "eqc" [] []

604 - ,DF "gt" [] []

605 - ,DF "lt" [] []]

606 -

607 prog :: Env -> [Def Exp] -> Env

608 prog g ds = g’ where

609 g’ = g :/ map ev ds

610 @@ -506 ,3 +448 ,161 @@ loadFile x = do

611 try :: Env -> String -> Comp

612 try g s = compute g e [] where

613 Just (e, "") = parse pExp s

614 +

615 +--

616 +-- Builtins

617 +--

618 +

619 +-- Given env and 2 operands (that are values ), compute result

620 +plus :: Env -> [Comp] -> Val

621 +plus g [a1 ,a2] = VI (f a1 + f a2)

622 + where f x = case x of

623 + Ret (VI n) -> n

624 + _ -> error "plus: argument not an int"

625 +plus g _ = error "plus: incorrect number of arguments , expected 2."

626 +

627 + plusF :: Env -> [Comp] -> Val
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628 + plusF g [a1 , a2] = VD (f a1 + f a2)

629 + where f x = case x of

630 + Ret (VD n) -> n

631 + _ -> error " plusF : argument not a float "

632 + plusF g _ = error " plusF : incorrect number of arguments , expected 2."

633 +

634 + minus :: Env -> [Comp] -> Val

635 + minus g [a1 ,a2] = VI (f a1 - f a2)

636 + where f x = case x of

637 + Ret (VI n) -> n

638 + _ -> error " minus : argument not an int"

639 + minus g _ = error " minus : incorrect number of arguments , expected 2."

640 +

641 + minusF :: Env -> [Comp] -> Val

642 + minusF g [a1 ,a2] = VD (f a1 - f a2)

643 + where f x = case x of

644 + Ret (VD n) -> n

645 + _ -> error " minusF : argument not an int"

646 + minusF g _ = error " minusF : incorrect number of arguments , expected 2."

647 +

648 +mult :: Env -> [Comp] -> Val

649 +mult g [a1 ,a2] = VI (f a1 * f a2)

650 + where f x = case x of

651 + Ret (VI n) -> n

652 + _ -> error "mult: argument not an int"

653 +mult g _ = error "mult: incorrect number of arguments , expected 2."

654 +

655 + multF :: Env -> [Comp] -> Val

656 + multF g [a1 ,a2] = VD (f a1 * f a2)

657 + where f x = case x of

658 + Ret (VD n) -> n

659 + _ -> error " multF : argument not an float "

660 + multF g _ = error " multF : incorrect number of arguments , expected 2."

661 +

662 +divF :: Env -> [Comp] -> Val

663 +divF g [a1 ,a2] = VD (f a1 / f a2)

664 + where f x = case x of

665 + Ret (VD n) -> n

666 + _ -> error " multF : argument not an int"

667 +divF g _ = error " multF : incorrect number of arguments , expected 2."

668 +

669 + builtinPred :: Bool -> Val

670 + builtinPred b = (if b then VA "true" else VA " false ") :&& VA ""

671 +

672 +lt :: Env -> [Comp] -> Val

673 +lt g [a1 ,a2] = builtinPred ((f a1) < (f a2))

674 + where f x = case x of

675 + Ret (VI n) -> n

676 + _ -> error "lt: argument not an int"

677 +lt g _ = error "lt: incorrect number of arguments , expected 2."

678 +

679 +ltF :: Env -> [Comp] -> Val

680 +ltF g [a1 ,a2] = builtinPred ((f a1) < (f a2))
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681 + where f x = case x of

682 + Ret (VD n) -> n

683 + _ -> error "ltF: argument not an int"

684 +ltF g _ = error "ltF: incorrect number of arguments , expected 2."

685 +

686 +gt :: Env -> [Comp] -> Val

687 +gt g [a1 ,a2] = builtinPred ((f a1) > (f a2))

688 + where f x = case x of

689 + Ret (VI n) -> n

690 + _ -> error "gt: argument not an int"

691 +gt g _ = error "gt: incorrect number of arguments , expected 2."

692 +

693 +gtF :: Env -> [Comp] -> Val

694 +gtF g [a1 ,a2] = builtinPred ((f a1) > (f a2))

695 + where f x = case x of

696 + Ret (VD n) -> n

697 + _ -> error "gtF: argument not an int"

698 +gtF g _ = error "gtF: incorrect number of arguments , expected 2."

699 +

700 +eqc :: Env -> [Comp] -> Val

701 +eqc g [a1 ,a2] = builtinPred ((f a1) == (f a2))

702 + where f x = case x of

703 + Ret (VX [c]) -> c

704 + _ -> error "eqc: argument not a character "

705 +eqc g _ = error "eqc: incorrect number of arguments , expected 2."

706 +

707 +eqN :: Env -> [Comp] -> Val

708 +eqN g [a1 ,a2] = builtinPred ((f a1) == (f a2))

709 + where f x = case x of

710 + Ret (VI n) -> n

711 + _ -> error "eqN: argument not an int"

712 +eqN g _ = error "eqN: incorrect number of arguments , expected 2."

713 +

714 +eqF :: Env -> [Comp] -> Val

715 +eqF g [a1 ,a2] = builtinPred ((f a1) == (f a2))

716 + where f x = case x of

717 + Ret (VD n) -> n

718 + _ -> error "eqF: argument not a float "

719 +eqF g _ = error "eqF: incorrect number of arguments , expected 2."

720 +

721 +eqR :: Env -> [Comp] -> Val

722 +eqR g [a1 ,a2] = builtinPred ((f a1) == (f a2))

723 + where f x = case x of

724 + Ret (VR r) -> r

725 + _ -> error "eqR: argument not a ref"

726 +eqR g _ = error "eqR: incorrect number of arguments , expected 2."

727 +

728 + alphaNumPred :: Env -> [Comp] -> Val

729 + alphaNumPred g [a] =

730 + (if isAlphaNum (f a) then VA "true" else VA " false ") :&& VA ""

731 + where f x = case x of

732 + Ret (VX [c]) -> c

733 + _ -> error " alphaNumPred : argument not a character "
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734 + alphaNumPred g _ =

735 + error " alphaNumPred : incorrect number of arguments , expected 2."

736 +

737 + chrFunc :: Env -> [Comp] -> Val

738 + chrFunc g [a] = VX [chr (f a)]

739 + where f x = case x of

740 + Ret (VI n) -> n

741 + _ -> error "chr: argument not a int"

742 + chrFunc g _ =

743 + error "chr: incorrect number of arguments , expected 1."

744 +

745 + roundF :: Env -> [Comp] -> Val

746 + roundF g [a] = VI ( round (f a))

747 + where f x = case x of

748 + Ret (VD n) -> n

749 + _ -> error " round : argument not a float "

750 + roundF g _ = error " round : incorrect number of arguments , expected 1."

751 +

752 + toFloat :: Env -> [Comp] -> Val

753 + toFloat g [a] = VD ( fromIntegral (f a))

754 + where f x = case x of

755 + Ret (VI n) -> n

756 + _ -> error " toFloat : argument not a float "

757 + toFloat g _ = error " toFloat : incorrect number of arguments , expected 1."

758 +

759 + builtins :: M.Map String (Env -> [Comp] -> Val)

760 + builtins = M. fromList [(" plus", plus), (" minus ", minus ), (" mult", mult), (" eqc

↪→ ", eqc)

761 + ,("lt", lt), (" gt", gt)

762 + ,(" plusF ", plusF ), (" minusF ", minusF ), (" multF ", multF ),

↪→ (" divF", divF)

763 + ,(" ltF", ltF), (" gtF", gtF)

764 + ,(" eqF", eqF), (" eqN", eqN), (" eqR", eqR)

765 + ,(" isAlphaNum ", alphaNumPred ), (" chr", chrFunc )

766 + ,(" roundF ", roundF ), (" toFloat ", toFloat )

767 + ]

768 +

769 +-- TODO: Generate this from ‘builtins ‘.

770 + envBuiltins :: Env

771 + envBuiltins = Empty :/ map (\x -> DF x [] []) (M.keys builtins )

772 diff --git a/ shonky /src/ Shonky / Syntax .hs b/ shonky /src/ Shonky / Syntax .hs

773 index 927980 a..83 d57b0 100644

774 --- a/ shonky /src/ Shonky / Syntax .hs

775 +++ b/ shonky /src/ Shonky / Syntax .hs

776 @@ -15,6 +15 ,7 @@ import Shonky . Renaming

777 data Exp

778 = EV String -- variable

779 | EI Int -- int

780 + | ED Double -- float ( double )

781 | EA String -- atom

782 | Exp :& Exp -- cons

783 | Exp :$ [Exp] -- n-ary application

784 @@ -58,6 +59 ,7 @@ data Pat
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785 data VPat

786 = VPV String -- LC: ?

787 | VPI Int -- int value

788 + | VPD Double -- float value

789 | VPA String -- atom value

790 | VPat :&: VPat -- cons value

791 | VPX [ Either Char VPat] -- LC: ?

792 diff --git a/ stack .yaml.lock b/ stack .yaml.lock

793 new file mode 100644

794 index 0000000..2 d6e2d0

795 --- /dev/null

796 +++ b/ stack .yaml.lock

797 @@ -0,0 +1 ,33 @@

798 +# This file was autogenerated by Stack .

799 +# You should not edit this file by hand.

800 +# For more information , please see the documentation at:

801 +# https :// docs. haskellstack .org/en/ stable / lock_files

802 +

803 + packages :

804 +- completed :

805 + hackage : wl -pprint -1.2.1 @sha256 :

↪→ aea676cff4a062d7d912149d270e33f5bb0c01b68a9db46ff13b438141ff4b7c ,734

806 + pantry -tree:

807 + size: 221

808 + sha256 : 750 b375c6fc33400551f9e32e26e41844c372270a9bc3571e912fa36df7c6d4f

809 + original :

810 + hackage : wl -pprint -1.2.1

811 +- completed :

812 + hackage : Unique -0.4.5 @sha256 :56

↪→ d1a2db7b1e70e8e2b341af6ba4ed44f1e3f636a654840eeebccaab4e3f3d60 ,2338

813 + pantry -tree:

814 + size: 344

815 + sha256 : aef0170a489b8d56fba47d43e2b277f3f626fff87827de1a7d57274b94cf6e21

816 + original :

817 + hackage : Unique -0.4.5

818 +- completed :

819 + hackage : indentation -trifecta -0.1.0 @sha256 :

↪→ cead425151e4e98a98ae163186dab471fafeb9854bd520b9d5356652114ac18e ,2460

820 + pantry -tree:

821 + size: 411

822 + sha256 : 143 c87fbf98238027d45070a8ed21109a5ab89341eda335a3d9a40f28e71f05c

823 + original :

824 + hackage : indentation -trifecta -0.1.0

825 + snapshots :

826 +- completed :

827 + size: 495203

828 + url: https :// raw. githubusercontent .com/ commercialhaskell /stackage - snapshots

↪→ / master /lts /13/8. yaml

829 + sha256 : 91139 b0de6b320b13e27d5e6e6c368e239974b06fb9dc86d8d96da08697972ac

830 + original : lts -13.8

831 diff --git a/ tests /should -fail/ floats /wrong -type.fk b/ tests /should -fail/ floats /

↪→ wrong -type.fk

832 new file mode 100644
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833 index 0000000.. e90e1f8

834 --- /dev/null

835 +++ b/ tests /should -fail/ floats /wrong -type.fk

836 @@ -0,0 +1 ,4 @@

837 +-- #desc Can ’t perform a float operation on a float and int

838 +-- # return failed to unify Int (line 4 , column 9) with Float (built -in)

839 +main : { Float }

840 +main! = 3 +. 3.0

841 diff --git a/ tests /should -pass/ floats /ops.fk b/ tests /should -pass/ floats /ops.fk

842 new file mode 100644

843 index 0000000.. b571ef0

844 --- /dev/null

845 +++ b/ tests /should -pass/ floats /ops.fk

846 @@ -0,0 +1 ,5 @@

847 +-- #desc Perform some standard float operations .

848 +-- # return true

849 +

850 +main : {Bool}

851 +main! = ((2.0 +. 1.0) /. 3.0) <. (( -. 1.0) *. (3.0 -. 6.0))





Appendix B

Diffeology on subsets

In the main text, it seemed that the FFLR p : PredDiff → Diff of example 8.1.13
had no diffeological content as it only talked about mere subsets. However, it
happens that every subset A of a diffeological space X has an induced diffeology.

Definition B.0.1 (van der Schaaf, 2020, Definition 2.51). Let X a diffeological
space. The subset diffeology, defined on a subset A ⊆ X, is the collection PA⊆X

of plots in X that take values in A. We will usually just refer to this diffeology
by PA when X is clear from context.

Furthermore, the subset diffeology on a subset A ⊆ X makes A a subspace of
X in the following sense.

Definition B.0.2 (Baez and Hoffnung, 2009, Definition 33). We say a smooth
map i : A→ X makes A a subspace of X if for any plot φ ∈ PX

U with φ(U) ⊆ i(A),
there exists a unique plot ψ ∈ PA

U with i · ψ = φ.

Just like quotients, subspaces are an instance of a more general concept,
namely strong monomorphisms.

Definition B.0.3 (Baez and Hoffnung, 2009, Definition 32). In any category,
a monomorphism i : A → X is strong if given any epimorphism p : E → B and
morphisms f, g making the outer square here commute:

E A

B X

f

i

g

p t

then there exists a unique t : B → A making the whole diagram commute.
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Proposition B.0.4 (Baez and Hoffnung, 2009, Proposition 34). A smooth map
i : A→ X is a strong monomorphism if and only if i makes A a subspace of X.

Furthermore, strong monomorphisms are regular monomorphisms in Diff .

Definition B.0.5. A regular monomorphism is a monomorphism which is the
equalizer of some pair of arrows.

Proposition B.0.6. In Diff , every strong monomorphism is regular.

Proof. Let i : X → A be a strong monomorphism. The set 2 B {0, 1} with the
indiscrete topology is the weak object classifier in Diff . As such, there exists a
unique characteristic morphism χi : X → 2 making

A X

1 2

i

!A χi

⊤

⌟

a pullback. Define χ′ : X → 2 by χ′(x) = 1 if x ∈ i(A) and 0 if x /∈ i(A). Then
χ′ is smooth because all maps into indiscrete spaces are and (χ′ · i)(a) = 1 =
(⊤·!A)(a). Thus by uniqueness χi = χ′ and so i(A) = χi

−1({1}).
We will show that i is an equalizer for χi,⊤·!X : X → 2. Clearly ⊤·!X · i =

⊤·!A = χi · i. Suppose we have a map j : B → X which equalizes χi and ⊤·!X .
Then for any b ∈ B, χi(j(b)) = 1 meaning j(b) ∈ χi

−1({1}) = i(A). Define
u : B → A by u B i−1(j(b)) which is well-defined because i is a monomorphism
and thus injective on the underlying sets. We will show u is smooth.

Let φ ∈ PB
U and consider i.u.φ : U → X. Then i · u · φ = j · φ ∈ PX

U as j is
smooth. Next, because (i · u · φ)(U) = i(u · φ(U)) ⊆ i(A) and i is strong, there
exists a unique ψ ∈ PA

U such that i · ψ = i · u · φ. As i is a monomorphism,
u · φ = ψ ∈ PA

U and so u is smooth.
Finally, if there is v : B → A such that i · v = j = i · u, then v = u as i is a

monomorphism. Therefore i is an equalizer and thus regular.

We again take advantage of this equivalence to find a factorization system for
logical relations for Diff .

Corollary B.0.7 (Cassidy, Hébert, and Kelly, 1985, Corollary 3.2). For a cate-
gory C, (epimorphisms, strong monomorphisms) is a factorization system if

1. C is finitely well-complete; or
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2. C is finitely complete and admits all cointersections of epimorphisms; or

3. C is finitely complete, finitely cocomplete, and all strong monomorphisms
are regular.

Corollary B.0.8. Diff has (epimorphisms, strong monomorphisms) as a factor-
ization system.

Theorem B.0.9. The factorization system (epimorphisms, strong monomor-
phisms) on Diff is a factorization system for logical relations.

Proof of theorem B.0.9. We must prove the five properties of definition 7.3.9.
Diff has pullbacks of strong monomorphisms: This is trivial as Diff is com-

plete.
Every strong monomorphism is a monomorphism: Strong monomorphisms

are monomorphisms by definition.
For every Y ∈ Diff the fibre SMonoY has small products: Fix an object

Y ∈ Diff . The objects in SMonoY are the objects of SMono over Y via cod, i.e.
strong monomorphisms m : X → Y . For strong monomorphisms m1,m2 : Xi →
Y , a map f : m1 → m2 in SMono is a morphism f : X1 → X2 such that m1 =
m2 ·f . Furthermore, in a full subcategory of an arrow category, which SMono is,
the product of objects is given by their pullback if it belongs to the subcategory.

Let {mi : Xi → Y }i∈I be a set of objects of SMono. Then their pullback exists
in Diff as it is complete. Denote this object by X and the induced projections by
πi : X → Xi so that m = mi ·πi for all i ∈ I. Note that each πi is a monomorphism
our pullback legs consists of monomorphisms, and so m is a monomorphism as
well. We must show that m is a strong monomorphisms. Fix an arbitrary i ∈ I.
It suffices to show that πi is a strong monomorphisms as they are closed under
composition by virtue of being part of a factorization system.

We can construct the pullback X explicitly in Diff as follows:

X =
x B (xi)i∈I ∈

∏
i∈I

Xi : ∀j, k ∈ I.mj · πj(x) = mk · πk(x)


PX
U =

{
φ : U → X : ∀i ∈ I. πi · φ ∈ PXi

U

}
.

We must show that πi : X → Xi makes X a subspace of Xi. Let φ ∈ PXi
U be

such that φ(U) ⊆ πi(X). We must show that there exists a unique ψ ∈ PX
U with

πi · ψ = φ.
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As φ(U) ⊆ πi(X), (mi ·φ)(U) ⊆ (mi · πi)(X). Because mi is smooth, mi ·φ ∈
PY

U . Next, πi(X) ⊆ Xi so (mi · φ)(U) ⊆ mi(Xi). Therefore, because mi is a
strong, there exists a unique θi ∈ PXi

U such that mi · θi = mi · φ. We deduce
θi = φ as mi is a monomorphism.

Next, as (mi ·πi)(X) = (mj ·πj)(X) for all j ∈ I \{i} and πj(X) ⊆ Xj, we get
(mi · φ)(U) ⊆ mj(Xj). As mj is a strong monomorphism, there exists a unique
θj ∈ P

Xj

U such that mj · θj = mi · φ.
Define ψ B ⟨θi⟩i∈I : U → ∏

i∈I Xi. For any k ∈ I, (mk ·πk)(ψ(u)) = mk(θk(u))
= mi(φ(u)) whether k = i or k ̸= i, and so ψ : U → X. Furthermore, πk · ψ =
θk ∈ PXk

U and so we have ψ ∈ PX
U .

We now have ψ ∈ PX
U such that πi ·ψ = θi = φ. Suppose there is ψ′ ∈ PX

U such
that π ·ψ′ = φ. Then πi ·ψ′ = πi ·ψ and so ψ′ = ψ because πi is a monomorphism.

In conclusion, mi and πi are strong monomorphisms, and so m = mi · πi is a
strong monomorphism and thus m is the product of the family {mi}i∈I .

SMono is closed under binary coproducts: Let mi : Xi → Yi for i = 1, 2 be
strong monomorphisms. As objects in Diff→, their coproduct is m1 +m2 : X1 +
X2 → Y1 + Y2 and the commutative square

Xi X1 +X2

Yi Y1 + Y2

mi

ιi

ιi

m1+m2

gives the coprojections mi → m1 + m2. Thus, we need to show that m1 + m2 is
a strong monomorphism. The map m1 + m2 is smooth and is injective on the
underlying sets, and thus is a monomorphism in Diff , so we need only show it is
strong.

In Diff , the underlying set of X1 +X2 is the coproduct of the underlying sets,
and the diffeology is given by

PX1+X2
U B

{
φ : U → X1+X2 : Vi B φ−1(Xi) ⊆open U and φ|Vi

∈ PXi
Vi

}
.

and likewise for Y1 + Y2. Let φ ∈ PY1+Y2
U with φ(U) ⊆ (m1 + m2)(X1 + X2) =

m1(X1) + m2(X2). Then Vi B φ−1(Yi) is an open subset of U and φ|Vi
∈ PYi

Vi
.

Thus, φ|Vi
⊆ mi(Xi) as φ|Vi

⊆ Yi ∩ (m1(X1) + m2(X2)). As mi is strong, there
exists a unique ψi ∈ PXi

Vi
such that mi · ψi = φ|Vi

.
Note that V1∩V2 = ∅ as they are the preimage of disjoint sets Y1, Y2 ⊆ Y1 +Y2

and V1 ∪ V2 = U , so that V1, V2 form an open partition of U . Furthermore,
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ιi ·ψi ∈ PX1+X2
Vi

, so ι1 ·ψ1 and ι2 ·ψ2 are compatible plots of X1+X2 by disjointness
V1 and V2 meaning there exists ψ ∈ PX1+X2

U such that ψ|Vi
= ιi · ψi.

Therefore, ((m1 + m2) · ψ)|Vi
= (m1 + m2) · ιi · ψi = mi · ψi = φ|Vi

and so
(m1 +m2) · ψ = φ as V1, V2 partition U . Furthermore, ψ is unique as m1 +m2 is
a monomorphism. Thus, m1 +m2 is strong.

Epi is closed under binary products: Let ei : Xi → Yi be epimorphisms. As
objects in Diff→, their product is e1 × e2 with projections analogously to the
coproduct case. We must show e1 × e2 is an epimorphism. We already know
e1×e2 is smooth, and it is clearly surjective on the underlying sets, and so indeed
it is an epimorphism.

We can now combine lemma 7.3.10 and theorem B.0.9.

Corollary B.0.10. Let SMono be the full subcategory of strong monomorphisms
of the arrow category of Diff . The restricted codomain fibration cod: SMono→
Diff is a FFLR.

Example 8.1.13 proved that p : PredDiff → Diff is an FFLR. PredDiff
seemed not to contain diffeological information for the predicate as the objects
are (A,X) where A is a mere subset of X and not a subobject. However,
cod: SMono → Diff is actually equivalent to p : PredDiff → Diff as fibra-
tions via a fibered equivalence. Let U : Diff → Set be the forgetful func-
tor. The equivalence is given by im : SMono → PredDiff which on objects
is (i : A → X) 7→

(
U(i(A)), X

)
, and em : PredDiff → SMono which on ob-

jects is (A,X) 7→
(
(A,PA⊆X), X

)
. Finally, similarly to cod: Mono → Diff ,

cod: SMono → Diff has fibres which are large preorders, but this does not
matter as we used p : PredDiff → Diff .
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